
Jazz Soft, Inc.

bop ActiveX Control
Users Manual

Copyright©2004 Jazz Soft, Inc.

 - 2 -

1 Revision History

Rev. Rev. Date Rev. By Description
1.00 Sep,5th,2005 Hikaru Okada Newly Created
1.00a Nov,18th,2005 Maryanna Malelu Translated to English
1.00b Nov,20th,2005 Hikaru Okada Modified multi-bytes characters

Copyright©2004 Jazz Soft, Inc.

 - 3 -

2 Introduction

Traditionally it has taken extremely long periods of time and high costs to develop GEM-compliant equipment.
Called a “Development License”, it has become a standard industry practice to charge prices that at first
glace seem almost unlawful, reaching into the tens of thousands of dollars for the initial investment and
tens of thousands more every year as a maintenance contract fee. In addition, the diffiulty of comprehending
the requirements, and the difficulty of performing the development work itself, has led to the current
situation, in which a “package deal” terms of sale commonly require the assignment of several development
personnel, at man/month costs in the teens of thousands of dollars per worker. However, let us consider
whether GEM compliance is truly as complicated as to require such expenditures.

Jazz Soft has developed and offered its Swing Series products with a new approach to these questions. In
order to achieve GEM compliance even more readily than with Swing, we offer our newest product, bop ActiveX
Control. A significant number of years and resources have gone into developing both Swing and bop, and although
they are not yet self-sustaining products, it is our firm belief that this can be improved with further
effort in business enterprising, depending on the point at which we will cross the line into low-priced
sales.

Bop is GEM development software, but can also accommodate GEM300. Although this version does not directly
support GEM300, full attention has been given to provide user-added functionality to expand its uses. Of
course, GEM and GEM300 systems can be structured using only Swing, but such applications require significant
functionality to be added by the user. Bop is a software version featuring a very reduced necessity for such
time expenditures.

The fundamental principles of Jazz Soft are:

① Never a fee for version upgrades
② No need for development licenses
③ No charge for maintenance contract

These are our policies, to which we will adhere both now and in the future. Our focus will continue to be
providing higher functionality products at low cost, so be sure to keep watching for exciting future products!

Jul,12th,2005
Jazz Soft, Inc.

Chief Operating Officer (COO)

Hikaru Okada

Copyright©2004 Jazz Soft, Inc.

 - 4 -

3 Table of Contents
1 Revision History... 2
2 Introduction... 3
3 Table of Contents... 4
4 Usage Environment.. 9

4.1 Development/Operating Environment .. 9
4.2 Combined Use of swing.. 9

5 Installation .. 10
5.1 Preparing Installation CD... 10
5.2 Executing the Installer... 10
5.3 Difference Between Trial Version and Product Version.. 10
5.4 Installing the HASP Driver ... 10

6 Tutorial ... 12
6.1 Visual Basic Version 6.0 .. 12

6.1.1 Creating a new Project ... 12
6.1.2 Requiring Variable Declarations... 12
6.1.3 Adding bop to a Project .. 13
6.1.4 Pasting to a Screen .. 13
6.1.5 Creating a GEM Setting Screen .. 14
6.1.6 Saving a Project ... 14
6.1.7 Restoring Settings ... 15
6.1.8 Revision Setting... 15
6.1.9 VI Setting .. 15
6.1.10 Predefined VID Setting... 16
6.1.11 Setting the Clock ... 17
6.1.12 State Setting.. 17
6.1.13 HSMS Setting .. 18
6.1.14 Enabling Communication .. 18
6.1.15 Message Processing ... 19
6.1.16 CEID Setting ... 19
6.1.17 Predefined CEID Setting .. 20
6.1.18 Enabling/Disabling a GEM Event .. 20
6.1.19 Sending a GEM Event.. 21
6.1.20 Defining a Dynamic Report .. 21
6.1.21 Updating Variables .. 22
6.1.22 Setting an ALID ... 22
6.1.23 Sending an Alarm.. 23
6.1.24 Full Source Code ... 23

6.2 Visual Basic.NET Version 2003 Version ... 23
6.2.1 Creating a New Project... 24
6.2.2 Adding bop to a Toolbox... 24
6.2.3 Pasting to a Screen .. 25
6.2.4 Creating a GEM Setting Screen .. 25
6.2.5 Restoring Settings ... 25
6.2.6 Copying a Setting File .. 25
6.2.7 Enabling Communication .. 26
6.2.8 Message Processing ... 26
6.2.9 Sending a GEM Event.. 26
6.2.10 Sending an Alarm.. 26
6.2.11 Full Source Code ... 26

6.3 Visual C++ Version 6.0 .. 27
6.3.1 Creating a New Project with the App Wizard ... 27
6.3.2 Inserting bop ... 28
6.3.3 Pasting to a Screen .. 29
6.3.4 Mapping to a Member Variable .. 30
6.3.5 Creating a GEM Setting Screen .. 31
6.3.6 Restoring Settings ... 31
6.3.7 Copying a Setting File .. 31
6.3.8 Enable Communication ... 32
6.3.9 Processing Messages.. 32
6.3.10 Sending a GEM Event.. 32
6.3.11 Sending an Alarm.. 33
6.3.12 Full Source Code ... 33

7 ActiveX Control Interface.. 34
7.1 Properties .. 34

7.1.1 ALIDCode .. 34
7.1.2 ALIDCount .. 34
7.1.3 ALIDDescription .. 34
7.1.4 CEIDCount.. 34
7.1.5 CEIDDescription.. 34
7.1.6 Communication... 35
7.1.7 ControlState .. 35
7.1.8 ControlStateSwitch.. 35
7.1.9 DeviceID.. 35
7.1.10 Discard Duplicated Block .. 35
7.1.11 Function ... 35
7.1.12 HexDump.. 36
7.1.13 Host .. 36
7.1.14 IniFile.. 36

Copyright©2004 Jazz Soft, Inc.

 - 5 -

7.1.15 IPAddress .. 36
7.1.16 LocalPortNumber... 36
7.1.17 LogFileBakCount ... 36
7.1.18 LogFileEnable.. 37
7.1.19 LogFileEnableCommunication.. 37
7.1.20 LogFileName.. 37
7.1.21 LogFileSize .. 37
7.1.22 LogicalConnection ... 37
7.1.23 LogicalConnectionFileName ... 37
7.1.24 Node.. 38
7.1.25 NodeCount .. 38
7.1.26 NodeType .. 39
7.1.27 NodeValue ... 39
7.1.28 NodeValueHex ... 39
7.1.29 Request Offline .. 40
7.1.30 OnlineRequest ... 40
7.1.31 PassiveEntity... 40
7.1.32 PhysicalConnection ... 40
7.1.33 PortNumber... 40
7.1.34 PType .. 40
7.1.35 Reply... 41
7.1.36 SessionID .. 41
7.1.37 SML .. 41
7.1.38 Stream .. 41
7.1.39 SType .. 41
7.1.40 SystemBytes.. 42
7.1.41 T1 ... 42
7.1.42 T2 ... 42
7.1.43 T3 ... 42
7.1.44 T4 ... 42
7.1.45 T5 ... 42
7.1.46 T6 ... 42
7.1.47 T7 ... 43
7.1.48 T8 ... 43
7.1.49 Verification.. 43
7.1.50 VIDCount .. 43
7.1.51 VIDDefault .. 43
7.1.52 VIDDescription .. 43
7.1.53 VIDMax ... 44
7.1.54 VIDMin.. 44
7.1.55 VIDNodeType... 44
7.1.56 VIDRawValue .. 44
7.1.57 VIDType .. 45
7.1.58 VIDUnit... 45
7.1.59 VIDValue... 45
7.1.60 ViewStyle... 45
7.1.61 WaitBit .. 45
7.1.62 WorkSpace .. 45

7.2 Method.. 47
7.2.1 Configure .. 47
7.2.2 DefProc ... 52
7.2.3 IndexToALID.. 52
7.2.4 IndexToCEID ... 52
7.2.5 IndexToVID ... 52
7.2.6 InvokeAlarm .. 52
7.2.7 InvokeEvent .. 53
7.2.8 IsValidVID ... 53
7.2.9 Load.. 53
7.2.10 LoadIniFile .. 53
7.2.11 RegisterALID ... 53
7.2.12 RegisterVID ... 53
7.2.13 Save .. 54
7.2.14 Send.. 54
7.2.15 UnregisterALID.. 54
7.2.16 UnregisterVID.. 54
7.2.17 WriteToLogFile... 54

7.3 Events ... 55
7.3.1 CommunicationStateChanged.. 55
7.3.2 Connected ... 55
7.3.3 ConnectionStateChanged... 55
7.3.4 ControlStateChanged... 55
7.3.5 Disconnected... 55
7.3.6 Errors ... 55
7.3.7 Received .. 55
7.3.8 Sent .. 56
7.3.9 VIDChanged .. 56

8 SML Reference ... 57
8.1 General Points of Note ... 57

8.1.1 White Space .. 57
8.1.2 Comments... 57

Copyright©2004 Jazz Soft, Inc.

 - 6 -

8.1.3 Numbers ... 57
8.1.4 Character String Expressions .. 57

8.2 SML Grammar... 57
8.2.1 Syntax... 57

8.3 Message Body.. 57
8.3.1 List.. 57
8.3.2 Binary ... 57
8.3.3 Boolean ... 57
8.3.4 ASCII Character Strings... 57
8.3.5 2-byte Character Strings.. 57
8.3.6 JIS-8 Character Strings ... 58
8.3.7 Integers ... 58
8.3.8 Floating Point Numbers ... 58

9 GEM.. 59
9.1 Communication Status Model .. 59
9.2 Control Status Model ... 60
9.3 Processing Status Model .. 61
9.4 Establishing Communication ... 61

9.4.1 Establishing Communication from Host ... 61
9.4.2 Establishing Communication from Equipment, Host Acknowledge Reply 61

9.5 GEM Compliance ... 63
10 SECS-II Messages .. 64

10.1 Item Dictionary.. 64
10.1.1 ACKC5 .. 64
10.1.2 ACKC6 .. 64
10.1.3 ACKC7 .. 64
10.1.4 ACKC7A .. 64
10.1.5 ACKC10 .. 64
10.1.6 AGENT .. 64
10.1.7 ALCD .. 64
10.1.8 ALED .. 65
10.1.9 ALID.. 65
10.1.10 ALTX ... 65
10.1.11 ATTRDATA .. 65
10.1.12 ATTRID ... 65
10.1.13 ATTRRELN .. 65
10.1.14 CCODE ... 65
10.1.15 CEED.. 65
10.1.16 CEID ... 65
10.1.17 CEPACK .. 65
10.1.18 CEPVAL... 66
10.1.19 COMMACK .. 66
10.1.20 CPACK .. 66
10.1.21 CPNAME ... 66
10.1.22 CPVAL... 66
10.1.23 DATAID ... 66
10.1.24 DATALENGTH ... 66
10.1.25 DRACK.. 66
10.1.26 EAC... 67
10.1.27 ECDEF.. 67
10.1.28 ECID ... 67
10.1.29 ECMAX ... 67
10.1.30 ECMIN .. 67
10.1.31 ECNAME ... 67
10.1.32 ECV .. 67
10.1.33 EDID... 67
10.1.34 ERACK .. 67
10.1.35 ERRCODE... 67
10.1.36 ERRTEXT .. 68
10.1.37 ERRW7.. 68
10.1.38 GRANT .. 68
10.1.39 GRANT6 .. 68
10.1.40 HCACK.. 68
10.1.41 LENGTH.. 68
10.1.42 LINKID .. 69
10.1.43 LRACK .. 69
10.1.44 MDLN.. 69
10.1.45 MEXP.. 69
10.1.46 MHEAD... 69
10.1.47 OBJACK.. 69
10.1.48 OBJID ... 69
10.1.49 OBJSPEC .. 69
10.1.50 OBJTYPE .. 69
10.1.51 OFLACK .. 70
10.1.52 ONLACK.. 70
10.1.53 OPID ... 70
10.1.54 PPARM .. 70
10.1.55 PPBODY .. 70
10.1.56 PPGNT... 70
10.1.57 PPID.. 70

Copyright©2004 Jazz Soft, Inc.

 - 7 -

10.1.58 RCMD ... 70
10.1.59 RCPATTRDATA.. 70
10.1.60 RCPATTRID ... 71
10.1.61 RCPBODY ... 71
10.1.62 RCPCMD ... 71
10.1.63 RCPDEL .. 71
10.1.64 RCPID ... 71
10.1.65 RCPOWCODE.. 71
10.1.66 RCPSPEC .. 71
10.1.67 RESPEC .. 71
10.1.68 RMACK ... 71
10.1.69 RMDATASIZE .. 72
10.1.70 RMGRANT ... 72
10.1.71 RMNSSPEC ... 72
10.1.72 RPTID.. 72
10.1.73 SEQNUM... 72
10.1.74 SHEAD.. 72
10.1.75 SOFTREV .. 72
10.1.76 SV... 72
10.1.77 SVID ... 72
10.1.78 SVNAME ... 72
10.1.79 TEXT... 73
10.1.80 TIACK.. 73
10.1.81 TID.. 73
10.1.82 TIME ... 73
10.1.83 UNITS ... 73
10.1.84 V... 73
10.1.85 VID ... 73

10.2 Messages... 74
10.2.1 SlF1 Online Acknowledge Request(R) ... 75
10.2.2 SlF2 Online Data (D).. 75
10.2.3 SlF3 Selected Equipment Status Request (SSR).. 75
10.2.4 S1F4 Selected Equipment Status Data (SSD) ... 75
10.2.5 S1F11 Status Variable Namelist Request (SVNR) .. 76
10.2.6 S1F12 Status Variable Namelist Reply (SVNRR) ... 76
10.2.7 S1F13 Establish Communication Request(CR) ... 76
10.2.8 S1F14 Establish Communication Request Acknowledge (CRA).. 76
10.2.9 S1F15 Request Offline (ROFL).. 77
10.2.10 S1F16 Offline Request Acknowledge(OFLA) .. 77
10.2.11 S1F17 Request Online (RONL) ... 77
10.2.12 S1F18 Online Request Acknowledge(ONLA) .. 77
10.2.13 S2F13 Equipment Constant Request(ECR) ... 77
10.2.14 S2F14 Equipment Constant Data (ECD)... 78
10.2.15 S2F15 New Equipment Constant Send定数変更(ECS) ... 78
10.2.16 S2F16 New Equipment Constant Acknowledge (ECA) ... 78
10.2.17 S2F17 Date and Time Request(DTR)... 78
10.2.18 S2F18 Date and Time Data (DTD) .. 78
10.2.19 S2F29 Equipment Constant Namelist Request (ECNR) ... 79
10.2.20 S2F30 Equipment Constant Namelist(ECN).. 79
10.2.21 S2F31 Date and Time Set Request(DTS)... 79
10.2.22 S2F32 Date and Time Set Acknowledge (DTA) .. 79
10.2.23 S2F33 Define Report (DR) .. 80
10.2.24 S2F34 Define Report Acknowledge (DRA) ... 80
10.2.25 S2F35 Link Event Report(LER)... 80
10.2.26 S2F36 Link Event Report Acknowledge (LERA) ... 81
10.2.27 S2F37 Enable/Disable Event Report(EDER) ... 81
10.2.28 S2F38 Enable/Disable Event Rport Acknowledge (EERA) ... 81
10.2.29 S2F39 Multi Block Inquire (DMBI) ... 81
10.2.30 S2F40 Multi Block Grant (MBG)... 82
10.2.31 S2F41 Host Command Send (HCS) .. 82
10.2.32 S2F42 Host Command Acknowledge (HCA) .. 82
10.2.33 S2F49 Enhanced Remote Command .. 82
10.2.34 S2F50 Enhanced Remote Command Acknowledge.. 84
10.2.35 S5F1 Alarm Report Send (ARS) .. 84
10.2.36 S5F2 Alarm Report Acknowledge (ARA) .. 84
10.2.37 S5F3 Enable/Disable Alarm Send(EAS).. 85
10.2.38 S5F4 Enable/Disable Alarm Acknowledge (EAA)... 85
10.2.39 S5F5 List Alarm Request (LAR) .. 85
10.2.40 S5F6 List Alarm Data (LAD) ... 85
10.2.41 S6F5 Multi Block Data Send Inquire (MBI) ... 85
10.2.42 S6F6 Multi Block Grant (MBG) .. 86
10.2.43 S6F11 Event Report Send (ERS)... 86
10.2.44 S6F12 Event Report Acknowledge(ERA).. 86
10.2.45 S6F15 Event Report Request (ERR) .. 86
10.2.46 S6F16 Event Report Data (ERD)... 86
10.2.47 S6F19 Individual Report Request (IRR)... 87
10.2.48 S6F20 Individual Report Data (IRD) ... 87
10.2.49 S7F1 Process Program Load Inquire (PPI) ... 87
10.2.50 S7F2 Process Program Load Grant (PPG).. 87
10.2.51 S7F3 Process Program Send (PPS).. 88

Copyright©2004 Jazz Soft, Inc.

 - 8 -

10.2.52 S7F4 Process Program Acknowledge (PPA).. 88
10.2.53 S7F5 Process Program Request (PPR) ... 88
10.2.54 S7F6 Process Program Data (PPD).. 88
10.2.55 S7F17 Delete Process Program Send (DPS)... 88
10.2.56 S7F18 Delete Process Program Acknowledge (DPA)... 89
10.2.57 S7F19 Current EPPD Request (RER) .. 89
10.2.58 S7F20 Current EPPD Data (RED)... 89
10.2.59 S7F23 Formatted Process Program Send (EPS)... 89
10.2.60 S7F24 Formatted Process Program Acknowledge (FPA) ... 90
10.2.61 S7F25 Formattted Process Program Request (FPR) ... 90
10.2.62 S7F26 Formatted Process Program Data (FPD) ... 90
10.2.63 S7F27 Process Program Verification Send (PVS) ... 91
10.2.64 S7F28 Process Program Verification Acknowledge (PVA) ... 91
10.2.65 S7F29 Process Program Verification Inquire (PVI) ... 91
10.2.66 S7F30 Process Program Verification Grant (PVG).. 91
10.2.67 S9F1 Unrecognized Device ID (UDN) .. 92
10.2.68 S9F3 Unrecognized Stream Type (USN) .. 92
10.2.69 S9F5 Unrecognized Function Type (UFN) ... 92
10.2.70 S9F7 Illegal Data (IDN) .. 92
10.2.71 S9F9 Transaction Timer Timeout (TIN) ... 92
10.2.72 S9F11 Data Too Long (DLN) ... 92
10.2.73 S9F13 Conversation Timeout (CTN).. 92
10.2.74 S10F1 Terminal Request (TRN) .. 93
10.2.75 S10F2 Terminal Request Acknowledge (TRA) .. 93
10.2.76 S10F3 Terminal Display, Single Block (VTN)... 93
10.2.77 S10F4 Terminal Display, Single Block Acknowledge (VTA) .. 93
10.2.78 S10F5 Terminal Display, Multi Block (VTN).. 93
10.2.79 S10F6 Terminal Display, Multi Block Acknowledge (VMA) .. 94
10.2.80 S10F7 Multi Block Not Allowed (MNN).. 94
10.2.81 S14F1 Get Attribute Request (GAR).. 94
10.2.82 S14F2 Get Attribute Data(GAD) ... 95
10.2.83 S15F1 Recipe Management Multi Block Inquire.. 96
10.2.84 S15F2 Recipe Management Multi Block Grant.. 96
10.2.85 S15F21 Recipe Action Request... 97
10.2.86 S15F22 Recipe Action Acknowledge ... 97
10.2.87 S15F27 Recipe Download Request ... 98
10.2.88 S15F28 Recipe Download Acknowledge.. 98
10.2.89 S15F29 Recipe Verify Request.. 100
10.2.90 S15F30 Recipe Verify Acknowledge .. 100
10.2.91 S15F31 Recipe Unload Request.. 102
10.2.92 S15F32 Recipe Unload Data .. 102
10.2.93 S15F35 Recipe Delete Request ... 103
10.2.94 S15F36 Recipe Delete Acknowledge.. 103

Copyright©2004 Jazz Soft, Inc.

 - 9 -

4 Usage Environment
4.1 Development/Operating Environment

Bop can be used in the following environments.

O/S Windows 98(USB version), Windows Me,

Windows 2000, Windows XP Professional,
Windows XP Home Edition and Windows
Server 2003. Regarding Windows NT 4.0 and
Windows 95, bop cannot be used with the
USB version but can be used with the
printer port version.

Development
Language

Active X 32-bit development languages
such as Microsoft Visual Basic 6.0,
Visual C++ 6.0, Visual Basic .NET, Visual
C++ .NET, C# .NET, Borland Delphi, C++
Builder, etc.

4.2 Combined Use of swing
With a bop HASP key, it is possible to operate swing and
Sexy as the product versions.

Function bop swing
SwingSecsI
SwingSecsII
SwingHsms
SwingComm
SexyM
bop -

Copyright©2004 Jazz Soft, Inc.

 - 10 -

5 Installation
5.1 Preparing Installation CD

When the Jazz Soft installation CD is placed in a PC,the
following screen will be displayed. If it is not
displayed, double-click the file named default.htm in
the CD’s root folder.

Bop and swing can be installed from this CD. To install
bop, click “bop Version 1.00”.

The contents of the bop setup folder will be displayed
as shown above.

5.2 Executing the Installer

Double-click setup.exe from the bop setup folder to
execute the installer.

When the Install button is clicked, installation
willbegin. When complete, the following message box will
be displayed, indicating that installation is complete.

5.3 Difference Between Trial Version and Product Version

Merely installing bop will allow only the trial version
to be operated. There are no particular differences
between the trial version and product version, but the
trial version will show the following dialogue box on
a frequent basis.

Since there are no restrictions in use of the trial
version, it is possible to do the same operation checks
as with the product version.

5.4 Installing the HASP Driver
When a product version of this product is purchased,it

is accompanied by a HASP key. Installing this in your
PC will operate the software as the product
version.Please note that it is necessary to install
the driver first, before inserting the HASP key.

Click HASP Driver 4.95 in the beforementioned Jazz Soft
installation CD.

Double-click hdd32.exe. When the following screen is
displayed, select “U.S. English” and press the OK button.

Press the Next button.

Copyright©2004 Jazz Soft, Inc.

 - 11 -

Copying of the driver will start. At this time, the files
necessary for installation have only been copied.

When preparations for installation have been
completed,the following screen will be displayed. Press
the Next button. It may take several minutes for
installation to occur.

When installation is completed, the following screen will
be displayed. Press the Finish button.

In some versions of Windows, a dialogue box such as that

shown below, recommending rebooting, may be displayed.
In such cases press OK and reboot.

Copyright©2004 Jazz Soft, Inc.

 - 12 -

6 Tutorial

In order to demonstrate the ease with which bop can be
usedto create GEM-compliant equipment, let’s try
creating a simple equipment. The following will be the
specifications for the equipment to be created in our
tutorial.

■GEM Event
CEID Description
100 Online to Offline
200 Carrier Loaded
201 Carrier Unloaded

■Variables

VID

Variable Type

Model

Description

Min.Value

Max. Value

Default

Unit

10 EC U2 EC Timer 0 60
0

30 sec

20 EC U2 Time
Format

0 1 1

30 SV U2 Ctrl
State

40 DV Ascii Carrier
ID

■Alarms
ALID Description
30000 Alignment Failure

6.1 Visual Basic Version 6.0
6.1.1 Creating a new Project
When Visual Basic 6 is launched, the following dialogue
box will be displayed. Check to make sure that “Standard
EXE” is selected and then press the Open button.

6.1.2 Requiring Variable Declarations
In default status, Visual Basic can be used without
declaring variables. This is so because it was that way
in the old BASIC language specifications. If development
is performed in this status, it is easy to fall into
problems with tangled program strands, so here we force
the declaration of variables. Select “Tools” – “Options”
from the menu.

Check the checkbox for “Require Variable Declaration”in
“Code Settings” from the “Editor” tab. This will make
it so that an error will occur if the program is used
without explicitly declaring variables.

When this option is enabled, an “Option Explicit”
declaration will precede the source code as shown below.

Option Explicit

While we are here, please set the “Width” and “Height”
in the “Form Grid Settings” from the “General” tab to
60. Their default setting is 120, but the grid is not
fine enough at this setting.

Press the OK button and close the Option dialogue box.In
order to enable the settings, close Visual Basic here
and then relaunch. When closing, it will ask whether or
not to save to project as shown below; in this case only
an Option setting was made, so press the No button to
avoid saving.

Copyright©2004 Jazz Soft, Inc.

 - 13 -

Once the program is rebooted, once again select “Standard
EXE” to create a blank project.

6.1.3 Adding bop to a Project
First of all, add bop ActiveX control to your project.
Select “Project” – “Components…” from the menu.

From the list of installed components, place a check mark
in the check box for “bop ActiveX Control module” and
press the OK button.

Bop will appear in the toolbox, and can then be pasted
atanytime. Bop will be indicated by a musical note icon.

6.1.4 Pasting to a Screen
When bop is pasted to a screen from the toolbox, the
following dialogue box will be displayed.

If the product version is purchased and the deletion key

is attached, this dialogue box will cease to be
displayed. When using the trial version of this product,
this dialogue box will be displayed frequently, but
will not affect operations. Press the OK button to
close this nuisance display.

When bop is pasted to a screen, it will appear as follows.

Copyright©2004 Jazz Soft, Inc.

 - 14 -

6.1.5 Creating a GEM Setting Screen
It is easy to create a GEM setting screen, which consists
merely of calling up a method already prepared in bop.
Start by attaching buttons to the screen.

Change the button’s Caption property to “&Setup...” to
make it appear appropriate as a setting button. When “&”
is appended, underlining appears and it becomes a
shortcut. It may also be useful to remember that the
Microsoft style of notation is to suffix with “…” when
the result of the button being pressed is the display
of a dialogue box.

When the Caption properties are changed, the appearance
of the button will be as shown below.

Enough for the external appearance, let’s equip the
internal workings. When the button is double-clicked,
event handler functions will be displayed.

As the setup is for Click event processing, fill this
in as-is. In order to display the setting screen, call
up the bop Configure method. Here, you only need to

Private Sub Command1_Click()
 Bop1.Configure "", -1
End Sub

write one line. It may seem to simple to be true, but

give it a try and a setting screen will be shown.

Once the functioning up to this point has been verified

to work, close the application and complete this round
of debugging.

6.1.6 Saving a Project
If you have ever developed using Visual Basic 6 you will
already know this, but it is possible for Visual Basic
to die due to an application error. So that such a
problem does not delete the source code you have gone
to the trouble to create, it is safer to perform frequent
saves. Let us try to save our project at this time.

To save your project, click the floppy disk icon.

It will first ask the folder in which to save the form

and the file name, so create an appropriate folder and
save it to this folder. For the file name, it can remain
at the default name of “Form1.frm”. Press the Save
button to save.

Next it will ask for the project’s saving destination.
Save this to the same folder also. The file name in this
case may also be left at the default name of
“Project1.vbp”. Press the Save button to save.

Copyright©2004 Jazz Soft, Inc.

 - 15 -

If Visual Studio Enterprise Edition has been installed,
it will ask whether to register in Visual Source Safe
（VSS）. In this case, as this is a tutorial, press No
to cancel saving in VSS.

When viewed using the Explorer, you can confirm that
Form1.frm and Project1.vbp are saved in the same folder.

Close Visual Basic at this point and make sure that your
project opens when you double-click Project1.vbp from
the Explorer. You will probably notice that a new file
named Project1.vbw will be added.

6.1.7 Restoring Settings
Earlier we were able to write a setting screen in just
one line, and we confirmed that setting contents were
saved, but when the application is next launched they
will disappear. This is because the application did not
load the setting contents. Double-click the form and
write the Form1 Load Event as shown below.

Private Sub Form_Load()
 Bop1.LoadIniFile
 Bop1.Load
End Sub

6.1.8 Revision Setting
Execute the application again, and set the previous
setting screen. Set the Revision tab as shown below.

Item Value
MDLN bopABC
SOFTREV 1.00.0

The value may be any desired value, must may only be a
maximum of 6 characters long. It is not possible to enter
full-size characters or half-size katakana characters.

6.1.9 VI Setting
In accordance with this ?????????, register the following
variables in the VID tab.

VID

Variable
Type

Model

Description

Min. Value

Max. Value

Default
Value

Unit

10 EC U2 EC Timer 0 600 30 sec
20 EC U2 Time

Format
0 1 1

30 SV U2 Ctrl
State

40 DV Ascii Carrier
ID

Press the Add New... button to register one at a time.

Copyright©2004 Jazz Soft, Inc.

 - 16 -

When registration is complete the following will be
shown.

Press the OK button and save the settings.

6.1.10 Predefined VID Setting
The predefined VID tab performs setting of “predefined
variables”. Settings are as shown below.

Name of Predetermined Variable VID#
Establish Communications Timeout 10
Time Format 20
Control State 30

First select “Establish Communications Timeout” and
press the Edit... button.

Copyright©2004 Jazz Soft, Inc.

 - 17 -

The VID registered earlier will be displayed in the list.
This is why we saved the settings. Select VID#1 and press
the OK button.

Set “Time Format” and “Control State” also, in the same
manner.

Here press the OK button again to save the settings.

6.1.11 Setting the Clock
The Clock tab sets the date and time. It can be confirmed

that”VID = #20” which was registered earlier is displayed
in “Date and Time Format” in this screen.

Once confirmed in the VID tab, it is possible to confirm
that VID#20’s Raw Value (shown as SML in the table）
has been rewritten to

<u2 1>

As a trial please change the Clock tab’s “Date and time
format” to “12 bytes”.

Press the OK button and save the settings. Open the
setting screen again and you will see that VID#20 has
been rewritten.

In this tutorial, we are leaving default values in place
and no changes will occur. Therefore, here we must return
the “Date and time format” to “16 bytes”.

6.1.12 State Setting
The State tab is set as follows.

Item Value
Initial communication state Enabled
Initial control state Offline
Initial offline state Host offline
Default offline state Host offline
Default online state Online remote

Copyright©2004 Jazz Soft, Inc.

 - 18 -

6.1.13 HSMS Setting
The HSMS tabs are set as follows in this tutorial.

Item Value
Passive Entity Yes（Checkmark）
Local Port Number 8888

Other parameters can stay at their default values.

6.1.14 Enabling Communication
To begin HSMS communication, we must enable the physical
connection. Specifically, we set the PhysicalConnection
property to “true”.

 Bop1.LoadIniFile
 Bop1.Load
 Bop1.PhysicalConnection = True

Let us check to see whether HSMS really makes the
connection. When the application is executed, the
following physical connection can be seen to have been
enabled.

However, at this point the server (passive entity) has
just launched, and if there is not connection from the
client (active entity), no connection will be
established.

Therefore here we can use a communication simulator and
try to make the actual application connect. Any
communication simulator software may be used; here we
will try using Jazz Soft’s Sexy, which can be used free
of charge.

When connected the above active entity will be
displayed.On the simulator side as well we can see that
the connection was made, as shown below.

Copyright©2004 Jazz Soft, Inc.

 - 19 -

We can see that MDLN and SOFTREV, which were set in the
Revision tab earlier, are coming via S1F13 Establish
Communication Request(CR). MDLN and SOFTREV are also
used by SlF2 Online Data(D), so please check when
transitioning to online, as well.

Even though the S1F13/14 transaction should have been
concluded, in a short while a T3 time-out will occur.
Why is this?

6.1.15 Message Processing
In bop, when a message is received, it is first
communicated to the application, and it is not processed
automatically. On the application side, the message may
be displayed on the screen, history may be recorded, or
other types of processing may be executed. However, most
messages only need to be turned over to bop. In this case,
we will choose refer all messages to bop.

Double-click bop in the design screen, to generate the
event handler. First, an error events handler will be
created in the code window.

Change to a Received event in the combo box.

A Received event handler will be created as shown below.
The error event handler will not be used this time so
we will delete it.

Write as shown below in the Received event handler. Note
the simplicity of only having to write this one line.

 Bop1.DefProc

Messages received here will now be automatically be
processed by bop.

6.1.16 CEID Setting
To generate a GEM event, EID must be registered. Launch
the application and edit the CEID tab.

Press the Add New... button and register CEID as
follows,in accordance with the specifications for this
tutorial.

CEID Description
100 Online to Offline
200 Carrier Loaded
201 Carrier Unloaded

If no checkmark is placed in “Enable”, the GEM event will

be disabled. Settings to enable/disable GEM events may
also be made in S2F37 Enable/Disable Event Report
(EDER).

Press the OK button and save the settings at this time.

Copyright©2004 Jazz Soft, Inc.

 - 20 -

6.1.17 Predefined CEID Setting
The Predefined CEID tab sets “Predefined GEM Events”.
Setting is as follows.

Predefined Variable Name VID#
Online To Offline 100

First select “Online To Offline” and press the
Edit...button.

The CEID list registered earlier will be displayed. This
is the reason we saved the settings. Select CEID#100 and
press the OK button.

Press the OK button to save the settings, and let us check
to make sure that the GEM event is really sent. Check
to verify that the S1F13/14 transaction has been
concluded, and send S1F17 Online Request(RONL)from the
simulator.

Sending...
Completed
2005/07/17 11:39:09
Send
127.0.0.1(8888)
00008111000000000031
S1F17W

Sending...
Completed
Decoding...
2005/07/17 11:39:09
Received
127.0.0.1(8888)
00000112000000000031
S1F18
<b 0x00>

Sexy will display detailed data, so we will make it so

that these items are deleted and only the message is
shown.

Send
S1F17W

Received
S1F18
<b 0x00>

It appears that online transition was performed correctly.
Just to be sure, send SlF1 Online Check Request(R)to
confirm it.

Send
S1F1W

Received
S1F2
{
 <a 'bopABC'>
 <a '1.00.0'>
}

We have confirmed that online transition occurred
correctly. Next, let’s send S1F15 Request Offline (ROFL)
and try to transition to offline operation.

Send
S1F15W

Received
S1F16
<b 0x00>

We transitioned to offline correctly. This generates an
Online To Offline event.

Received
S6F11W
{
 <u4 1>
 <u4 100>
 {
 }
}

Send
S6F12
<b 0x00>

6.1.18 Enabling/Disabling a GEM Event
We have already learned that GEM events can be
enabled/disabled through communication as well. Let us
now try to actually perform this setting. When “false”
is specified for CEED in S2F37 Enable/Disable Event
Report(EDER), and when the continuing list length is
zero, all GEM events are disabled.

Send
S2F37W
{
 <bool false>
 {
 }

Copyright©2004 Jazz Soft, Inc.

 - 21 -

}

Received
S2F38
<b 0x00>

Let’s try to transition offline.

Send
S1F15W

Received
S1F16
<b 0x00>

We were able to verify that since the GEM event was
disabled, S6F11 was not generated.

In the example above, we disabled all GEM events at
once,but enabling/disabling GEM events can be set for
each individual CEID unit as well.

6.1.19 Sending a GEM Event
This time, let us try generating a GEM event when a carrier
is placed on or removed from a load port. First, paste
a text box and check box to a screen as follows.

The check box Click event is written as follows.

Private Sub Placed_Click()
 If Placed.Value = 1 Then
 Bop1.InvokeEvent 200
 Else
 Bop1.InvokeEvent 201
 End If
End Sub

Try enabling all GEM events.

Send
S2F37W
{
 <bool true>
 {
 }
}

Received
S2F38
<b 0x00>

Execute the application and click the check box. The CEID
#200 Carrier Loaded event will be sent.

Received
S6F11W
{
 <u4 1>
 <u4 200>
 {
 }
}

Send
S6F12
<b 0x00>

When the check box is clicked once again, the CEID #201
Carrier Unloaded event is sent.

Received
S6F11W
{
 <u4 2>
 <u4 201>
 {
 }
}

Send
S6F12
<b 0x00>

6.1.20 Defining a Dynamic Report
In the previous GEM events, no reports were attached.
Now let’s define a report from the communication
simulator side. First, disable all GEM events.

Send
S2F37W
{
 <bool false>
 {
 }
}

Received
S2F38
<b 0x00>

In this status, even if the check box is clicked, GEM

events will stop being sent.

Next, discard all reports.

Send
S2F33W
{
 <u4 0>
 {
 }
}

Received
S2F34
<b 0x00>

Define a new report. Here, VID #40 is pasted to report
#1000

Copyright©2004 Jazz Soft, Inc.

 - 22 -

Send
S2F33W
{
 <u4 0>
 {
 {
 <u4 1000>
 {
 <u4 40>
 }
 }
 }
}

Received
S2F34
<b 0x00>

We will link the report to the GEM event. Here we have
linked report #1000 to CEID #200 and Report #1000 to CEID
#201.

Send
S2F35W
{
 <u4 0>
 {
 {
 <u4 200>
 {
 <u4 1000>
 }
 }
 {
 <u4 201>
 {
 <u4 1000>
 }
 }
 }
}

Received
S2F36
<b 0x00>

Finally, we will enable all GEM events.

Send
S2F37W
{
 <bool true>
 {
 }
}

Received
S2F38
<b 0x00>

When the application’s check box is checked, reports are

now attached when GEM events are sent.

Received
S6F11W
{
 <u4 3>
 <u4 200>
 {
 {
 <u4 1000>
 {
 <a>
 }
 }

 }
}

Send
S6F12
<b 0x00>

6.1.21 Updating Variables
As VID #40 has not been updated, a blank character string
has been sent with the previous GEM event. Let’s try
updating VID immediately before sending a GEM event.
Updating VID is simple and only requires the addition
of one line.

Private Sub Placed_Click()
 Bop1.VIDValue(40) = CarrierID.Text
 If Placed.Value = 1 Then
 Bop1.InvokeEvent 200
 Else
 Bop1.InvokeEvent 201
 End If
End Sub

When a character string is put into a text box in the
application, the character string will be sent as shown
below.

Received
S6F11W
{
 <u4 6>
 <u4 201>
 {
 {
 <u4 1000>
 {
 <a 'Be Bop'>
 }
 }
 }
}

Send
S6F12
<b 0x00>

6.1.22 Setting an ALID
It is necessary to register an ALID to generate an alarm.
We will edit the ALID tab in the application’s setting
screen.

Press the Add New... button, and register the following
ALID in accordance with the specifications for this
tutorial.

Copyright©2004 Jazz Soft, Inc.

 - 23 -

ALID Description
30000 Alignment Failure

If “Enable” is not checkmarked, the alarm will be disabled.
It is also possible to set whether an alarm is enabled
or disabled via communication. Press the OK button at
this time and save the settings.

6.1.23 Sending an Alarm
Let’s add an alarm generating function to our application.
Paste a check box to the screen.

The check box’s Click event is written as follows.

Private Sub Invoke_Click()
 If Invoke.Value = 1 Then
 Bop1.InvokeAlarm 30000, -1
 Else
 Bop1.InvokeAlarm 30000, 0
 End If
End Sub

To explain this code, when a checkmark is present it

specifies “-1” for the InvokeAlarm method argument.
This means that an alarm will be generated. In the same
way, if the check box is not checked, it specifies “0”,
and this means clearing of the alarm. Please note that
if there is no alarm occurrence, an alarm clear will
not be sent.

6.1.24 Full Source Code
The above has been an overview introducing bop’s

functions. It has many more functions, and thus not all
of them could be covered here, but the above should have
provided a look at some of bop’s powerful functions.

This sample program is GEM compliant in every respect.
However, the source code is unbelievably short, totaling
only 33 lines in all. This may be surprising! The more
lines a piece of software has, the more chance there is
for bugs to be present, so a shorter source code will
always lead to fewer bugs. Of course, this also shortens
development time and reduces development costs as well.

Option Explicit

Private Sub Bop1_Received(ByVal lpszIPAddress As String,
ByVal lPortNumber As Long)
 Bop1.DefProc
End Sub

Private Sub Command1_Click()
 Bop1.Configure "", -1
End Sub

Private Sub Form_Load()
 Bop1.LoadIniFile
 Bop1.Load
 Bop1.PhysicalConnection = True
End Sub

Private Sub Invoke_Click()
 If Invoke.Value = 1 Then
 Bop1.InvokeAlarm 30000, -1
 Else
 Bop1.InvokeAlarm 30000, 0
 End If
End Sub

Private Sub Placed_Click()
 Bop1.VIDValue(40) = CarrierID.Text
 If Placed.Value = 1 Then
 Bop1.InvokeEvent 200
 Else
 Bop1.InvokeEvent 201
 End If
End Sub

One more thing to add: In Visual Basic it is possible

to use With to abbreviate objects.

 With Bop1
 .LoadIniFile
 .Load
 .PhysicalConnection = True
 End With

The Descriptions which follow use this abbreviation
format.

6.2 Visual Basic.NET Version 2003 Version
In the case of Visual Basic.NET as well, there is not
much difference versus Visual Basic 6.0.

Copyright©2004 Jazz Soft, Inc.

 - 24 -

6.2.1 Creating a New Project
Launch Visual Studio .NET 2003 and click “File” –
“New”-“Project” from the menu.

Select Visual Basic Project from the project type list,
and select Windows Application as the template. Select
a folder in which to save your project and press the OK
button.

6.2.2 Adding bop to a Toolbox
When you hold the mouse above the toolbox, the following
toolbox will open.

Right-click on top of this open toolbox and select
Add/Remove Items....

Select the COM Components tab, check Bop Control from
the list and press the OK button.

Check to make sure that Bop Control was registered in
the toolbox.

Copyright©2004 Jazz Soft, Inc.

 - 25 -

6.2.3 Pasting to a Screen
When bop is pasted to a screen it will appear as follows.

Paste the other controls in the same manner as for Visual
Basic Version 6.0.

6.2.4 Creating a GEM Setting Screen
When the button marked “Setup...” is double-clicked, the
following screen will appear.

Write as follows at this time.

 AxBop1.Configure("", -1)

This can be written with a single line, just like in Visual
Basic 6.0.

6.2.5 Restoring Settings
Double-click the form and write as follows in the Form
1 Load event.

 AxBop1.LoadIniFile()
 AxBop1.Load()

6.2.6 Copying a Setting File
The GEM setting method is the same as for Visual Basic
Version 6.0. Here, let’s copy and reuse the bop.bop and
bop.ini files created in Visual Basic Version 6.0. Copy
these two files into the execute folder (bin folder).

Copyright©2004 Jazz Soft, Inc.

 - 26 -

6.2.7 Enabling Communication
To initiate HSMS communication, set “true” for the 、
PhysicalConnection property.

 AxBop1.LoadIniFile()
 AxBop1.Load()
 AxBop1.PhysicalConnection = True

6.2.8 Message Processing
To write a message receiving process, double-click bop
in the same fashion as in Visual Basic Version 6.0. Errors
event handler functions will be created first, as shown
below.

Re-select to a Received event.

Received event handler functions will be created as shown
below. Go ahead and erase the Errors event handler
functions.

Here, write as follows.

 AxBop1.DefProc()

6.2.9 Sending a GEM Event
The process for sending a GEM event is also virtually
the same as with Visual Basic Version 6.0. However, with
Visual Studio .NET, there is a slight change in the

grammar for accessing the properties of the array type.

 AxBop1.set_VIDValue(40, CarrierID.Text)
 If Placed.Checked Then
 AxBop1.InvokeEvent(200)
 Else
 AxBop1.InvokeEvent(201)
 End If

6.2.10 Sending an Alarm
The process of sending an alarm is almost the same.

 If Invoke.Checked Then
 AxBop1.InvokeAlarm(30000, -1)
 Else
 AxBop1.InvokeAlarm(30000, 0)
 End If

6.2.11 Full Source Code
If we leave out the code created by Windows Form Designer,
we can see that very few lines of coding is required,
similar to with Visual Basic 6.0.

Public Class Form1
 Inherits System.Windows.Forms.Form

Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 AxBop1.Configure("", -1)
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 AxBop1.LoadIniFile()
 AxBop1.Load()
 AxBop1.PhysicalConnection = True
 End Sub

 Private Sub AxBop1_Received(ByVal sender As Object,
ByVal e As AxBOPLib._DBopEvents_ReceivedEvent) Handles
AxBop1.Received
 AxBop1.DefProc()
 End Sub

 Private Sub Placed_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Placed.CheckedChanged
 AxBop1.set_VIDValue(40, CarrierID.Text)
 If Placed.Checked Then
 AxBop1.InvokeEvent(200)
 Else
 AxBop1.InvokeEvent(201)
 End If
 End Sub

 Private Sub Invoke_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Invoke.CheckedChanged
 If Invoke.Checked Then
 AxBop1.InvokeAlarm(30000, -1)
 Else
 AxBop1.InvokeAlarm(30000, 0)
 End If
 End Sub
End Class

Copyright©2004 Jazz Soft, Inc.

 - 27 -

6.3 Visual C++ Version 6.0

In the case of Visual C++, since the language is different
from Visual Basic, there are a few differences.

In Japan there is a strong climate of disdain for the
Basic language. It appears to have inherited the image
of N88-BASIC,the language of choice for amateur
programmers. However, Visual Basic is an extremely
refined language which can be said to have exceeded the
limits of a simple language, but the old prejudices still
linger.

In this climate of disdain for Basic, C++ has become the
main language of interest in Japan, and the tendency is
to dislike programs created using Basic. Nonetheless,
C++ is an extremely difficult language, to the extent
that even professionals with a complete grasp of C cannot
master is easily. In reality, 90% or more of those who

call themselves C++ programmers are in a lamentable
situation of writing in C , with only the compiler
 environment using C++. This situation is probably also
clear when looking at the very few numbers of JAVA
programmers, which has fewer functions than C++.

Observing the self-styled C++ programmers around me,
there are many whom even at 10 years of C++ experience,
do not know the very basics, such as that “destructors
must be virtual”. Since the knowledge level of
programmers in general is this low, anyone without
confidence in their C++ expertise had better not even
try development using it. It will only decrease
productivity.

As we moved forward to Visual Studio .NET, it would not
be an exaggeration to say that the boundary between Basic
and C++ has almost disappeared. This is why these days,
C++ dropouts have revised their thinking and although
only gradually, have started using Basic, thinking that
“with Basic there is at least a chance of mastery”.
Converts from COBOL and FORTRAN despair of basic
mastering of C++, and even when they hop right over to
Basic, they worry about the world’s prejudicial attitudes
toward Basic. They say they would be embarrassed to know
only Basic. Perhaps the tide of restoration in Basic’s
reputation will be a good opportunity.

The above has diverged from our topic, but the source
code we have created in our tutorial with VC++ is not
significantly different from Visual Basic. Since we are
creating the same specification of software, this is
obviously the case. It is just that there are more obscure
areas than in Basic. In this tutorial, we will not be
touching on VC++ or MFC（Microsoft Foundation Class
Library）details, so it would be desirable for those with
points of inclarity to study on their own, using MSDN
（Microsoft Developer Network）, etc.1

6.3.1 Creating a New Project with the App Wizard
Launch Visual C++ 6.0 and click “File” – “New” from the
menu.

1 Jazz Soft also provides bop、swing、and VC++ training (for a separate fee)

Select the MFC AppWizard (.exe), specify the project name
and folder, and press the OK button.

There are three types of projects that can be created
with Visual C++ 6.0.

Project Description
Single
document

Applicating handling one document at a
time, such as “Memo Pad”. This is called
an SDI（Single Document Interface）.

Multiple
documents

Applications which can handle
multipledocuments at a time, such as
“Visual C++ 6.0” This is called an MDI
（Multiple Document Interface）.

Dialog
based

Simple application starting from a
dialogue box, such as software created
using Visual Basic or C#. Document/View
structure cannot be used.

Here we will create a Dialog based application. Select
a dialog-based radio button and press the Next button.

Copyright©2004 Jazz Soft, Inc.

 - 28 -

As no About box (version information dialogue box) is
needed, uncheck it and press the Next button.

This screen can remain in its default state, so simply
press the Next button.

This screen can also remain in its default state, so press
the Finish button.

The final check screen will be displayed. Press the OK
button.

The project will be created.

6.3.2 Inserting bop
In Visual C++ 6.0, it is necessary to perform the Insert
process prior to using bop. This creates a wrapper class
from the ActiveX control type library.

Select “Project”-“Add To Project”-“Components and
Controls...” from the menu.

Double-clidk Registered ActiveX Controls and move to that
folder.

Copyright©2004 Jazz Soft, Inc.

 - 29 -

Select bop Control from the COM list and press the Insert
button.

It will confirm whether or not to insert; press the OK
button.

The check screen will be displayed, but the wrapper class
name and file name can both remain in their default state,
so simply press the OK button.

When we return to the COM list screen, press the Close
button to close the screen. Check to confirm that bop
has been added to the control list.

6.3.3 Pasting to a Screen
There is alrealy a text box saying “TODO: Place dialog
controls here.” pasted in the dialogue box screen; erase
it as it is not needed. Also, we do not need a cancel
button because pressing the × mark at the top right of
the dialogue box will close the application, so delete
this as well.

When bop is pasted to the screen it will be as shown below.

Copyright©2004 Jazz Soft, Inc.

 - 30 -

In the same manner as with Visual Basic Version 6.0, we

will paste other controls. Let’s use the OK button as
the Setup button.

6.3.4 Mapping to a Member Variable
With only pasting a control, there is no name in Visual
C++ 6.0. It is possible to acquire a pointer for the
control using GetDlgItem(), but there is an easier way.
This is by making it a member variable.

In Visual C++ 6.0, Class Wizard is used for almost
everything, such as creating member variables, creating
event handler functions, etc. Select “View”-“Class
Wizard...” from the menu.

When Class Wizard opens, first select the Member

Variables tab as the class name, and verify that
CtutorialVC6Dlg has been selected. In this tutorial,
since we only have 2 classes, a dialogue box class and
an application class, it is very simple. However, when
many screens are created such as MDI and SDI, etc., there
are some cases in which errors can be made in selecting
the target class.

Select the Member Variables tab, and press the Add
Variable button.

When a dialogue box such as that below opens, enter the
variable name. In Microsoft style, member variables
start with “m_” so let us follow that convention. Here
we have input the name “m_bop”. When entry is finished
press the OK button.

Here we can confirm that the member variable is displayed
in the list.

Copyright©2004 Jazz Soft, Inc.

 - 31 -

6.3.5 Creating a GEM Setting Screen
Class Wizard is used also for adding GEM setting screens.
The Setup button has an ID of IDOK, so select this, and
create a BN_CLICKED even handler function. Press the Add
Function button.

A dialogue box confirming the function name will be
displayed, but this can remain at the default status so
press the OK button.

The event handler function is created. Press the Edit
Code button.

Jump to the event handler function.

Change as follows.

void CTutorialVC6Dlg::OnOK()
{
 m_bop.Configure(NULL,-1);

// CDialog::OnOK();
}

CDialog::OnOK() calls up a hypothetical member function
in the parent class, and in this is written the process
for closing the dialogue box. That is why this section
is commented out.

The first argument in the Configure()method can be
written as follows.

 m_bop.Configure(“”,-1);

In Basic, pointers cannot be used, so we have used “ ”” ”,
but in C++ we can use NULL. However, they are both the
same.

6.3.6 Restoring Settings
In Class Wizard, write as follows in OnInitDialog().
OnInitDialog() is the WM_INITDIALOG event handler
function.

 m_bop.LoadIniFile();
 m_bop.Load();

Following addition, OnInitDialog() will be as follows.

BOOL CTutorialVC6Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does
this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 m_bop.LoadIniFile();
 m_bop.Load();

 return TRUE; // return TRUE unless you set the focus
to a control
}

6.3.7 Copying a Setting File
The method of setting in GEM is the same as in Visual
Basic Version 6.0. Here we will copy and re-use the
bop.bop and bop.ini files we created in Visual Basic

Copyright©2004 Jazz Soft, Inc.

 - 32 -

Version 6.0. Copy these 2 files to the source folder
（folder with .dsw）.

6.3.8 Enable Communication
To start HSMS communication, set “true” for the
PhysicalConnection property.

 m_bop.LoadIniFile();
 m_bop.Load();
 m_bop.SetPhysicalConnection(true);

6.3.9 Processing Messages
Class Wizard is also used to write the message receiving
process. Select IDC_BOPCTRL1（bop resource ID name）,
select Received event and press the Add Function button.

A dialogue box confirming the handler function name will
be displayed. This can remain in its default seting of
OnReceivedBopctrl1, so simply press the OK button.

The handler function was created, so press the Edit Code
button.

It will jump to OnReceivedBopctrl1(), so write as
follows.

 m_bop.DefProc()

6.3.10 Sending a GEM Event
The event sending process is different from Visual Basic
6.0 and Visual Basic .NET. It is necessary to write
accesses to all properties as a function call, as with
the method.

First map the carrier ID to a member variable. Select
IDC_CARRIERID from the Class Wizard Member Variables tab,
and press the Add Variable button. Enter the variable
name in the dialogue box that is displayed and press the
OK button. Here we have named it m_strCarrierID.

IDC_PLACED is designated as follows.

In the Message Maps tab, select IDC_PLACEDのBN_CLICKED
and press the Add Function button.

Copyright©2004 Jazz Soft, Inc.

 - 33 -

The function name may remain at the default setting, so
simply press the OK button.

Jump from Class Wizard to OnPlaced(), and write as
follows.

 UpdateData();

 m_bop.SetVIDValue(40,m_strCarrierID);

 if(m_bPlaced)
 m_bop.InvokeEvent(200);
 else
 m_bop.InvokeEvent(201);

6.3.11 Sending an Alarm
The process of sending alarms is also somewhat different,
but it is similar to using a GEM event. First, assign
a variable name to IDC_INVOKE in Class Wizard.

Create the Click event handler function for IDC_INVOKE
in the Message Maps tab and jump.

Write as shown below.

 UpdateData();

 if(m_bInvoke)
 m_bop.InvokeAlarm(30000, -1);
 else
 m_bop.InvokeAlarm(30000, 0);

6.3.12 Full Source Code
Except for code automatically created by App Wizard,
very few lines are needed,similar to Visual Basic 6.0.

BOOL CTutorialVC6Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does
this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 m_bop.LoadIniFile();
 m_bop.Load();
 m_bop.SetPhysicalConnection(true);

 return TRUE; // return TRUE unless you set the focus
to a control
}

void CTutorialVC6Dlg::OnReceivedBopctrl1(LPCTSTR
lpszIPAddress, long lPortNumber)
{
 m_bop.DefProc();
}

void CTutorialVC6Dlg::OnPlaced()
{
 UpdateData();

 m_bop.SetVIDValue(40,m_strCarrierID);

 if(m_bPlaced)
 m_bop.InvokeEvent(200);
 else
 m_bop.InvokeEvent(201);
}

void CTutorialVC6Dlg::OnInvoke()
{
 UpdateData();

 if(m_bInvoke)
 m_bop.InvokeAlarm(30000, -1);
 else
 m_bop.InvokeAlarm(30000, 0);
}

However, since mastering C++ is not easy, if one is not
fully confident in that ability we recommend programming
in Visual Basic.

Copyright©2004 Jazz Soft, Inc.

 - 34 -

7 ActiveX Control Interface
7.1 Properties
7.1.1 ALIDCode

■Description
ALID classification code. Handled as ALCD. Even when a
value is set in ALIDCode, only the last 7 bits are recorded.
The top bit of ALCD is used to mean generation/clearing
of alarms, and this bit is specified by the InvokeAlarm
argument.

If ALID is not registered, it is not possible to set a
value. The following method is used to obtain a list of
registered ALID.

First find how many ALIDCount there are.

 lCount = .ALIDCount

ALIDCount will return the number of registered ALID,so
values that can be used as the index are those from 0
to (ALIDCount - 1). Using IndexToALID, this is converted
to ALID.

 lALID = .IndexToALID(lCnt)

The ALID has been obtained, so it is possible to access
ALIDCode and ALIDDescription.

 nALCD = .ALIDCode(lALID)
 strALTX = .ALIDDescription(lALID)

This should be arrayed by repeating the For statement.
The full source code will be displayed.

 Dim lCount As Long
 lCount = .ALIDCount

 Dim lCnt As Long
 For lCnt = 0 to lCount – 1
 Dim lALID As Long
 lALID = .IndexToALID(lCnt)

 Dim nALCD As Integer
 nALCD = .ALIDCode(lALID)

 Dim strALTX As String
 strALTX = .ALIDDescription(lALID)
 Next lCnt

■Declaration
■Visual C++ 6

short GetALIDCode(long lALID);
void SetALIDCode(long lALID, short nNewValue);

■Visual Basic 6

Property ALIDCode(lALID As Long) As Integer

Format Description
lALID ALID

■Related Items
ALIDCount, ALIDDescription, IndexToALID, InvokeAlarm

7.1.2 ALIDCount

■Description
Total number of registered ALID. If 0, none are

registered.

ALIDCount will return the number of registered
ALID,sovalues that can be used as the index are those
from 0 to (ALIDCount - 1). Using IndexToALID, this is
converted to ALID.

■Declaration
■Visual C++ 6

long GetALIDCount();

■Visual Basic 6

ALIDCount As Long

■Special Notes
Read-only property.

■Related Items
ALIDCode, ALIDDescription, IndexToALID, InvokeAlarm,
CEIDCount, VIDCount

7.1.3 ALIDDescription

■Description
ALID Description. With S5F1 Send Alarm Report(ARS), this
is sent as ALTX.

In SECS-II, ALTX has a limitation on the maximum number
of characters, at 40 characters. However, bop does not
have this limitation.

■Declaration
■Visual C++ 6

BSTR GetALIDDescription(long lALID);
void SetALIDDescription(long lALID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property ALIDDescription(lALID As Long) As String

Format Description
lALID ALID

7.1.4 CEIDCount

■Description
Total number of registered CEID.

CEIDCount will return the number of registered
CEID, so the values that can be used as the index are
those from 0 to (CEIDCount - 1). Using IndexToCEID, this
is converted to CEID.

■Declaration
■Visual C++ 6

long GetCEIDCount();

■Visual Basic 6

CEIDCount As Long

■Special Notes
Read-only property.

■Related Items
ALIDCount, VIDCount

7.1.5 CEIDDescription

Copyright©2004 Jazz Soft, Inc.

 - 35 -

■Description
CEID Description.

■Declaration
■Visual C++ 6

BSTR GetCEIDDescription(long lCEID);
void SetCEIDDescription(long lCEID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property CEIDDescription(lCEID As Long) As String

Format Description
lCEID CEID。

7.1.6 Communication

■Description
Communication status model. Communication status is one
of the following.

Name Val. Description
Disabled 0 Comm disabled
NotCommunicating 1 Comm aborted
Communicating 2 Comm active

■Declaration
■Visual C++ 6

short GetCommunication();
void SetCommunication(short nNewValue);

■Visual Basic 6

Communication As Integer

7.1.7 ControlState

■Description
Control status model. Control status is one of the
following.

Name Val. Description
EquipmentOffLine 0 Tool offline
AttemptOnLine 1 Attempting online
HostOffLine 2 Host offline
OnLineLocal 3 Online local
OnLineRemote 4 Online remote

Some control status transitions are not allowed. For this
reason, ControlStateSwitch is used of online/offline
switching. Refer to Control Status Model regarding
allowed status transitions.

■Declaration
■Visual C++ 6

short GetControlState();
void SetControlState(short nNewValue);

■Visual Basic 6

ControlState As Integer

■Related Items
ControlStateSwitch, ControlStateChanged

7.1.8 ControlStateSwitch

■Description
Online/offline switching switch. Some control status
transitions are not allowed. For this reason,

ControlStateSwitch is used of online/offline
switching. Refer to Control Status Model regarding
allowed status transitions.

Value Description
true Transition from offline to online
false Transition from online to offline

When a status is actually transitioned a
ControlStateChanged event is generated.

■Declaration
■Visual C++ 6

void SetControlStateSwitch(BOOL bNewValue);

■Visual Basic 6

ControlStateSwitch As Boolean

■Special Notes
Write-only property

■Related Items
ControlState, ControlStateChanged

7.1.9 DeviceID

■Description
Device ID. SessionID is the first 16 bits of the message
header. DeviceID are the 15 bits excluding the top bit
of the SessionID.

■Declaration
■Visual C++ 6

long GetDeviceID();
void SetDeviceID(long nNewValue);

■Visual Basic 6

DeviceID As Long

■Related Items
SessionID

7.1.10 Discard Duplicated Block

■Description
Specifies whether or not to discard duplicated blocks.
If true, if the exact same message is continuously
received, messages arriving later will be disregarded.
If false, they will not be disregarded, and will be
communicated to the application via Received event. It
is best to set this to true under normal circumstances.

■Declaration
■Visual C++ 6

BOOL GetDiscardDuplicatedBlock();
void SetDiscardDuplicatedBlock(BOOL bNewValue);

■Visual Basic 6

DiscardDuplicatedBlock As Boolean

■Related Items
Received

7.1.11 Function

■Description
Function Number

Copyright©2004 Jazz Soft, Inc.

 - 36 -

■Declaration
■Visual C++ 6

short GetFunction();
void SetFunction(short nNewValue);

■Visual Basic 6

Function As Integer

■Related Items
Stream

7.1.12 HexDump

■Description
Obtains message as hexadecimal character string.

When a character string is set in SML, bop compiles the
character string and builds the data structure inside.
At this time, when HexDump is read out, it converts to
binary structure and returns it converted to a
hexadecimal character string.

■Declaration
■Visual C++ 6

BSTR GetHexDump();
void SetHexDump(LPCTSTR lpszNewValue);

■Visual Basic 6

HexDump As String

■Related Items
SML

7.1.13 Host

■Description
Set from the host side to the client side. Since the
purpose of the bop product is to mount GEM（tools）, set
Host properties as always false.

■Declaration
■Visual C++ 6

BOOL GetHost();
void SetHost(BOOL bNewValue);

■Visual Basic 6

Host As Boolean

7.1.14 IniFile

■Description
Ini file name for saving settings. Please note that when
full path name is specified as relative path name, the
ini file fill be created in that folder, but if only a
file name is specified, it will be created in the Windows
folder. If we wish to created it in the current folder,
please specify as follows.

 .IniFile = “./bop.ini”

■Declaration
■Visual C++ 6

BSTR GetIniFile();
void SetIniFile(LPCTSTR lpszNewValue);

■Visual Basic 6

IniFile As String

7.1.15 IPAddress

■Description
Continuing IP address. In the case of a passive entity,it
is its own IP address, so it does not need to be specified.
In the case of an active entity, specify the connection
destination’s IP address.

Property Passive Active
IPAddress Not required Required
PortNumber Not required Required
LocalPortNumber Required Required

(Normally 0）

■Declaration
■Visual C++ 6

BSTR GetIPAddress();
void SetIPAddress(LPCTSTR lpszNewValue);

■Visual Basic 6

IPAddress As String

■Related Items
PortNumber, LocalPortNumber

7.1.16 LocalPortNumber

■Description
Local port number. In the case of a passive entity, this
is a public port number with respect to the client.

In the case of an active entity, this is normally
specified as 0. When 0 is specified, an open port will
automatically be selected. When something other than 0
is specified, it cannot connect unless that particular
port number is open. In Windows, even if connection is
broken, for a short while (several minutes) that port
number is still appropriated. Please note that for this
reason, if something other than 0 is specified,
connection will not be possible for several minutes.

Property Passive Active
IPAddress Not required Required
PortNumber Not required Required
LocalPortNumber Required Required

(Normally 0）

■Declaration
■Visual C++ 6

long GetLocalPortNumber();
void SetLocalPortNumber(long nNewValue);

■Visual Basic 6

LocalPortNumber As Long

■Related Items
IPAddress, PortNumber

7.1.17 LogFileBakCount

■Description
Number of log file back-up files. The log file name is
as shown below.

Copyright©2004 Jazz Soft, Inc.

 - 37 -

File Name Description
XXXXX.log Newest log file in terms of time
XXXXX001.log Back-up file that is one prior to the

above, in terms of time
XXXXX002.log Back-up file that is two prior to the

above, in terms of time.
... ...

■Declaration
■Visual C++ 6

short GetLogFileBakCount();
void SetLogFileBakCount(short nNewValue);

■Visual Basic 6

LogFileBakCount As Integer

■Related Items
LogFileName, LogFileSize, LogFileEnableCommunication,
LogFileEnable

7.1.18 LogFileEnable

■Description
Specifies whether or not to record log files. When this
property is true files are recorded, and when false they
are not recorded.

■Declaration
■Visual C++ 6

BOOL GetLogFileEnable();
void SetLogFileEnable(BOOL bNewValue);

■Visual Basic 6

LogFileEnable As Boolean

■Related Items
LogFileName, LogFileSize, LogFileEnableCommunication,
LogFileBakCount

7.1.19 LogFileEnableCommunication

■Description
Specifies whether or not to record communication module
logs in files. When this property is true they are
recorded in files, and when false they are not recorded.

■Declaration
■Visual C++ 6

BOOL GetLogFileEnableCommunication();
void SetLogFileEnableCommunication(BOOL bNewValue);

■Visual Basic 6

LogFileEnableCommunication As Boolean

■Related Items
LogFileName, LogFileSize, LogFileEnable,
LogFileBakCount

7.1.20 LogFileName

■Description
Log file name. When specifying a log file name, a suffix
is not added. The suffix “.log” will be added
automatically.

File Name Description
XXXXX.log Newest log file in terms of time
XXXXX001.log Back-up file that is one prior to the

above, in terms of time
XXXXX002.log Back-up file that is 2 prior to the

above, in terms of time
... ...

■Declaration
■Visual C++ 6

BSTR GetLogFileName();
void SetLogFileName(LPCTSTR lpszNewValue);

■Visual Basic 6

LogFileName As String

■Related Items
LogFileName, LogFileSize, LogFileEnableCommunication,
LogFileBakCount

7.1.21 LogFileSize

■Description
Log file size. When this file size is exceeded, a
back-up file will be created.

Units are KB (kilobytes). This means that for example,if
1024 is specified, the size will be 1MB (megabyte).

■Declaration
■Visual C++ 6

long GetLogFileSize();
void SetLogFileSize(long nNewValue);

■Visual Basic 6

LogFileSize As Long

■Related Items
LogFileName, LogFileBakCount, LogFileBakCount,
LogFileEnableCommunication

7.1.22 LogicalConnection

■Description
Type of logical connection. The following items are
defined.

Value Description
0 Basic model. No particular processing occurs.
1 GEM model.

We are using bop to mount GEM, so the LogicalConnection
is always 1.2

■Declaration
■Visual C++ 6

short GetLogicalConnection();
void SetLogicalConnection(short nNewValue);

■Visual Basic 6

LogicalConnection As Integer

7.1.23 LogicalConnectionFileName

■Description
File name in which to save setting contents for logical
connection. No suffix is to be specified (“.bop” will
be automatically added). Default is bop.bop (property

2 In the current bop version, always set the LogicalConnection property to 1.。

Copyright©2004 Jazz Soft, Inc.

 - 38 -

value is “./bop”).

In GEM, we are requesting that report definitions, etc.
are recorded in non-volatile memory media. For this
reason, LogicalConnectionFileName must be used.

■Declaration
■Visual C++ 6

BSTR GetLogicalConnectionFileName();
void SetLogicalConnectionFileName(LPCTSTR lpszNewValue);

■Visual Basic 6

LogicalConnectionFileName As String

7.1.24 Node

■Description
Node specifier. A node is the operand in the message
structure.

Folders in a hard disk can be given a “tree structure”
on a PC. A folder is created and files are placed inside
of it. Not only files but also folders can be made inside
of a folder. In a tree format, the folder is the “branch”
and the files are the “leaves”.

In the same way, an SML data structure can also be given
a tree structure. The list will be the “branch”, and the
other items will be the “leaves”. The node is a classifier
which identifies the “branch” and “leaf” positions.

Nodes are made up of slashes (“/”) and the node number.If
a node is empty (“”),the root will be considered what
was specified. In general roots are in list format, but
other formats may also be specified. The root must be
in list format when there are sub-nodes.

For example, let us assume an SML as follows.

 {
 <a‘Kelly’>
 {
 <a‘Brenda’>
 {
 <a‘Donna’>
 }
 }
 <a‘Valerie’>
 {
 {
 {
 <a‘Andrea’>
 }
 }
 }
 }

Let us assign numbers so it is easy to identify nodes.

1 {
 1 <a‘Kelly’>
 2 {
 1 <a‘Brenda’>
 2 {
 1 <a‘Donna’>
 }
 }
 3 <a‘Valerie’>
 4 {
 1 {
 1 {
 1 <a‘Andrea’>
 }
 }
 }

 }

If Kelly, Brenda, Donna, Valerie, and Andrea are shown
denoted as node positions, they would be as follows. There
are no restrictions on the node nesting level.

Value Node
Kelly 1
Brenda 2/1
Donna 2/2/1
Valerie 3
Andrea 4/1/1/1

If the node is in array format, use [] to extract
identifiers and specify and index. For example, let us
assume an SML such as that below.

 {
 <f8 9.11 3.14>
 }

If we wished to extract the second element, “3.14”, we
would specify the index. Since the index starts from 0,
if it is the 2nd element, it would be “1”.

 .Node = “1[1]”

When this is read out, only the identifier returns, as
shown below.

 “3.14”

■Declaration
■Visual C++ 6

BSTR GetNode();
void SetNode(LPCTSTR lpszNewValue);

■Visual Basic 6

Node As String

■Related Items
NodeCount, NodeType, NodeValue, NodeValueHex

7.1.25 NodeCount

■Description
Number of node items. Some nodes are in array format.
Lists are the most common example.

In the example below, since the list has 3 sub-nodes,
the NodeCount is 3. If you do not know the number of list
elements beforehand, etc. it is good to first read out
NodeCount and loop it for the number of repetitions.

 {
 <a‘Yoda’>
 <a‘R2-D2’>
 <a‘C-3PO’>
 }

In the example below, there is one u2 item, 2 u4 items,
and 3 f8 items in the NodeCount.

 {
 <u2 99>
 <u4 1024 4096>
 <f8 1.05 2.26 3.14>

Copyright©2004 Jazz Soft, Inc.

 - 39 -

 }

The NodeCount of the following list is 0.

 {
 }

■Declaration
■Visual C++ 6

long GetNodeCount();

■Visual Basic 6

NodeCount As Long

■Special Items
Read-only property

7.1.26 NodeType

■Description
Nodes are one of the following types.

Node Format Val. Description
NodeTypeList 1 List
NodeTypeBinary 2 Binary
NodeTypeBoolean 3 Boolean
NodeTypeAscii 4 ASCII character string
NodeTypeJis 5 JIS-8 code
NodeTypeLong8 6 8-byte signed integer
NodeTypeChar 7 1-byte signed integer
NodeTypeShort 8 2-byte signed integer
NodeTypeLong 9 4-byte signed integer
NodeTypeDouble 10 8-byte floating pt no.
NodeTypeFloat 11 4 byte floating pt no.
NodeTypeDWord8 12 8 byte floating pt no.
NodeTypeByte 13 1 byte floating pt no.
NodeTypeWord 14 2 byte floating pt no.
NodeTypeDWord 15 4 byte floating pt no.
NodeTypeAscii2 16 2 byte ASCII char. string

When NodeType is read out, if the value is 0, it means
it is an “invalid format”.

■Declaration
■Visual C++ 6

short GetNodeType();

■Visual Basic 6

NodeType As Integer

■Special Notes
Read-only property

7.1.27 NodeValue

■Description
Node value. Binary format, numerical format (signed
integers, unsigned integers, floating point numbers)
will be converted to decimal expression character strings.
Boolean format “true” will be converted to “1” and “false”
will be converted to “0”.

In the case of an item array, （NodeCount greater than
1）, each element is separated by one character of space
code. For example, let’s assume the SML message below.

 {

 <u2 333 444 555>
 }

To read out this u2 item, specicy “1” in Node.

 .Node = “1”

When read out, a character string as shown below will
return.

 “333 444 555”

If we only wish to read out specific elements of the array,
specify the index using [].

 .Node = “1[1]”

When this is read, the specific elements only will return,
as shown below.

 “444”

■Declaration
■Visual C++ 6

BSTR GetNodeValue();

■Visual Basic 6

NodeValue As String

■Special Items
Read-only property

■Related Items
NodeValueHex

7.1.28 NodeValueHex

■Description
Node value in hexadecimal expression. For example, let’s
assume the following SML message.

 <u2 254>

When read out, the following character string will
return.

 “fe”

■Declaration
■Visual C++ 6

BSTR GetNodeValueHex();

■Visual Basic 6

NodeValueHex As String

■Special Notes
Read-only property

■Related Items
NodeValue

Copyright©2004 Jazz Soft, Inc.

 - 40 -

7.1.29 Request Offline

■Description
Specifies whether or not to accept S1F15 Request
Offline(ROFL). When this property is true, offline
requests are accepted, and OFLACK=0 is returned by S1F16
Offline Request Acknowledge acknowledgment(OFLA). When
false, requests are denied and OFLACK=1 is returned.

■Declaration
■Visual C++ 6

BOOL GetOfflineRequest();
void SetOfflineRequest(BOOL bNewValue);

■Visual Basic 6

OfflineRequest As Boolean

■Related Items
OnlineRequest

7.1.30 OnlineRequest

■Description
Specifies whether or not to accept S1F17 online
request(RONL). When this property is true, online
requests are accepted and ONLACK=0 is returned by S1F18
Online Request Acknowledge(ONLA). When false, requests
are denied and ONLACK=1 is returned.

■Declaration
■Visual C++ 6

BOOL GetOnlineRequest();
void SetOnlineRequest(BOOL bNewValue);

■Visual Basic 6

OnlineRequest As Boolean

■Related Items
OfflineRequest

7.1.31 PassiveEntity

■Description
Specifies whether passive entity (server9 or active
entity (client). When this property is true the setting
is to passive entity, and when false to active entity.

Value Description
true Passive entity
false Active entity

There is not clear standard as to whether a tool is
A passive or an active entity. However, since there are
many cases in which setting the tool side as a passive
entity is logical, in modern-day interpretations it is
more common to set tools as passive entities. Bop can
accommodate both settings.

■Declaration
■Visual C++ 6

BOOL GetPassiveEntity();
void SetPassiveEntity(BOOL bNewValue);

■Visual Basic 6

PassiveEntity As Boolean

7.1.32 PhysicalConnection

■Description
Specifies whether or not the physical connection
Model is enabled or not. If this property is true, the
physical connection model is enabled, and if false, it
is disabled.

By setting this property as true, communication
ports are opened, and communication becomes possible.
However, the communication ports are actually opened
not at the moment the property is set to true, but rather
immediately afterward. For this reason, even if the
following type of program is written, it is not possible
to know whether or not the port was opened.

 .PhysicalConnection = True
 If .PhysicalConnection Then
 ...

■Declaration
■Visual C++ 6

BOOL GetPhysicalConnection();
void SetPhysicalConnection(BOOL bNewValue);

■Visual Basic 6

PhysicalConnection As Boolean

7.1.33 PortNumber

■Description
Connecting port number. In the case of a passive entity,
since it is not the case that it will go to connect with
its partner, there is no need to specify (it will be
disregarded). In the case of an active entity, specify
the connection’s destination port number.

Property Passive Active
IPAddress Not required Required
PortNumber Not required Required
LocalPortNumber Required Required

(Normally 0）

■Declaration
■Visual C++ 6

long GetPortNumber();
void SetPortNumber(long nNewValue);

■Visual Basic 6

PortNumber As Long

■Related Items
IPAddress, LocalPortNumber

7.1.34 PType

■Description
HSMS P type. If the message content is SECS-II, thisis
0. However, since at the present time no other P type
than 0 has been provided for, anything but 0 will cause
an error.

■Declaration
■Visual C++ 6

short GetPType();
void SetPType(short nNewValue);

■Visual Basic 6

Copyright©2004 Jazz Soft, Inc.

 - 41 -

PType As Integer

7.1.35 Reply

■Description
Selects the reply portion of operand messages.When a
message is received via Received Event, it will be set
in WorkSpace0. If we wish to analyze a received message,
we can process it as-is. If we wish to respond to a received
message, set Reply to true, and edit the reply portion.
After this, when DefProc is called by the event handler
function, messages requiring replies will send the reply
message written in the reply section.

If we wish to send a message not from the Received Event
handler but from the normal process, we create a message
in Reply=false of WorkSpace0.

■Declaration
■Visual C++ 6

BOOL GetReply();
void SetReply(BOOL bNewValue);

■Visual Basic 6

Reply As Boolean

■Related Items
WorkSpace, Send, Received

7.1.36 SessionID

■Description
Section ID. The SessionID is the first 16 bits of the
message header. DeviceID is the 15 bits, excluding the
topmost bit, of SessionID.

■Declaration
■Visual C++ 6

long GetSessionID();
void SetSessionID(long nNewValue);

■Visual Basic 6

SessionID As Long

■Related Items
DeviceID

7.1.37 SML

■Description
Message character string expression. SECS-II messages
are in binary structure, and cannot be comprehended by
a human as-is. In order to make it more understandable,
we express it by an ASCII character string.

SML Expression Description
l List
b Binary
bool Boolean
a ASCII char. string
j JIS-8
a2 2-byte ASCII char. string
i8 8-byte signed integer
i1 1-byte signed integer
i2 2-byte signed integer
i4 4-byte signed integer
f8 8-byte floating pt. number
f4 4-byte floating pt. number
u8 8-byte unsigned integer
u1 1-byte unsigned integer

u2 2-byte unsigned integer
u4 4-byte unsigned integer

When a character string is set in SML, bop compiles the
character string, and builds a data structure inside it.
At this time, if HexDump is read out, it converts to binary
structure, and returns that converted into a hexadecimal
character string. When SML is read out, a character string
is generated from the bop’s internal data structure.

When creating a message, first create the message’s
SMLcharacter string, and set that in SML. Refer to SML
Reference for details on SML syntax.

■Declaration
■Visual C++ 6

BSTR GetSML();
void SetSML(LPCTSTR lpszNewValue);

■Visual Basic 6

SML As String

■Related Items
HexDump, SML Reference

7.1.38 Stream

■Description
Stream number.

■Declaration
■Visual C++ 6

short GetStream();
void SetStream(short nNewValue);

■Visual Basic 6

Stream As Integer

■Related Items
Function

7.1.39 SType

■Description
HSMS S type. S types provided are the following.

S Type Meaning Description
0 Data Message Normal SECS-II message

having streams/functions
1 Select.req Select request
2 Select.rsp Select request response
3 Deselect.req Deselect request
4 Deselect.rsp Deselect request response
5 Linktest.req Link test request
6 Linktest.rsp Link test request response
7 Reject.req Reject request
9 Separate.req Separate request

In HSMS-SS, Deselect.req and Deselect.rsp are not used.

■Declaration
■Visual C++ 6

short GetSType();
void SetSType(short nNewValue);

■Visual Basic 6

SType As Integer

Copyright©2004 Jazz Soft, Inc.

 - 42 -

7.1.40 SystemBytes

■Description
System bytes. System bytes are the last 4 bytes
Among the 10 bytes in the SECS header. As long as this
value is unique to the transaction waiting for a reply
(open transaction) it can be anything, but normally it
would be good to have it increase by +1 for each primary
message sent.

The secondary message’s SystemBytes must be the same as
that of the primary message.

■Declaration
■Visual C++ 6

long GetSystemBytes();
void SetSystemBytes(long nNewValue);

■Visual Basic 6

SystemBytes As Long

7.1.41 T1

■Description
SECS-I T1 timeout. The unit is a millisecond.

■Declaration
■Visual C++ 6

short GetT1();
void SetT1(short nNewValue);

■Visual Basic 6

T1 As Integer

■Special Notes
This property is an item for use by SECS-I, so it is not
used.

7.1.42 T2

■Description
SECS-I T2 timeout. The unit is a millisecond.

■Declaration
■Visual C++ 6

short GetT2();
void SetT2(short nNewValue);

■Visual Basic 6

T2 As Integer

■Special Items
This property is an item for use by SECS-I, so it is not
used.

7.1.43 T3

■Description
T3 timeout. Also called transaction timeout. The unit
is a second.

Time from sending of the primary message to receipt
of the secondary message. If more than this amount of
time elapses, a T3 timeout occurs, and the tool will send
S9F9 Transaction Timer Timeout(TIN).

■Declaration
■Visual C++ 6

short GetT3();
void SetT3(short nNewValue);

■Visual Basic 6

T3 As Integer

7.1.44 T4

■Description
SECS-I T4 timeout. The unit is a second.

■Declaration
■Visual C++ 6

short GetT4();
void SetT4(short nNewValue);

■Visual Basic 6

T4 As Integer

■Special Notes
This property is an item for use by SECS-I, so it is not
used.

7.1.45 T5

■Description
HSMS T5 timeout. Also called a connection separation
timeout. The unit is a second.

This property only relates in the case of an active
entity.This amount of time or more must be waited if a
connection has failed to be made, or was disconnected.

■Declaration
■Visual C++ 6

short GetT5();
void SetT5(short nNewValue);

■Visual Basic 6

T5 As Integer

7.1.46 T6

■Description
HSMS T6 timeout. Also called control transaction
timeout.The uit is a second.

In control messages (message with an S type other than
0), this is the time between sending of a request and
receipt of a response. T3 timeout monitors the
transaction versus the data message, and this could be
called the control message version of that.

Timing occurs when the following times time out,
specifically.

S Type Description
1 Time from sending of Select.req to receipt

of Select.rsp.
3 Time from sending of Deselect.req to receipt

of Deselect.rsp.
5 Time from sending of Linktest.req to receipt

of Linktest.rsp.

■Declaration
■Visual C++ 6

Copyright©2004 Jazz Soft, Inc.

 - 43 -

short GetT6();
void SetT6(short nNewValue);

■Visual Basic 6

T6 As Integer

7.1.47 T7

■Description
HSMS T7 timeout. Also called NOT SELECTED timeout. The
unit is a second.

If the TCP/IP level is connected via HSMS but it is left
without transitioning to the Selected status, it will
disconnect after a preset time has elapsed. Also, even
if it transitions from Selected status to Deselected
status via Deselect.req, if it is left without restoring
to Selected status, it will also be disconnected.

■Declaration
■Visual C++ 6

short GetT7();
void SetT7(short nNewValue);

■Visual Basic 6

T7 As Integer

7.1.48 T8

■Description
HSMS T8 timeout. Also called network character timeout.
The unit is a second.

Even if the HSMS connection is not cut off, if data is
broken off for a short while during receipt of one
message, it will be unable to determine whether or not
what comes next is a continuation of the message. If the
time allotted by the T8 timer elapses, it will be deemed
a “communication failure”, and the result will be
disconnection.

It is similar to a SECS-I T1 timeout.

■Declaration
■Visual C++ 6

short GetT8();
void SetT8(short nNewValue);

■Visual Basic 6

T8 As Integer

7.1.49 Verification

■Description
Result of verification of a received message. This is
one of the following.

Result Val. Description
Correct 0 In compliance with SEMI

E.5（SECS-II）.
UserDefined 1 User-defined message.
Incorrect 2 Not in compliance.
IncorrectAndReply 3 Not in compliance, but

reply is via secondary
message rather than S9F7

NoWBit 4 Required W bit absent
WBit 5 Unneeded W bit present
WrongDirection 6 Message direction is

backwards
UnrecognizedStream 7 Undefined stream
UnrecognizedFunction 8 Undefined function

When a message is received, the message structure is
verified within bop. The result of this check is set in
Verification, and a Received Event is generated.

■Declaration
■Visual C++ 6

short GetVerification();
void SetVerification(short nNewValue);

■Visual Basic 6

Verification As Integer

■Related Items
Received Event

7.1.50 VIDCount

■Description
Total number of registered VID.

VIDCount returns the number of registered VID, so the
values which can be used for the index are those from
0 to (VIDCount - 1). Using IndexToVID, this is converted
to VID.

■Declarations
■Visual C++ 6

long GetVIDCount();

■Visual Basic 6

VIDCount As Long

■Special Notes
Read-only property

■Related Items
ALIDCount, CEIDCount

7.1.51 VIDDefault

■Description
VID default value. ECDEF of S2F30 Equipment Constant
Namelist(ECN).

■Declaration
■Visual C++ 6

BSTR GetVIDDefault(long lVID);
void SetVIDDefault(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDDefault(lVID As Long) As String

Format Description
lVID VID。

■Related Items
S2F30 Equipment Constant Namelist(ECN)

7.1.52 VIDDescription

■Description
VID Description. Depending on the VIDType,the way in
which this property is treated varies slightly.

Copyright©2004 Jazz Soft, Inc.

 - 44 -

In the case of SVID, it is treated as an SVNAME of S1F12
Status Variable Namelist Reply (SVNRR). In the case of
ECID, it is treated as an ECNAME of S2F30 Equipment
Constant Namelist(ECN).

In the case of DVID, we would want to treat it as a DVNAME,
but unfortunately in GEM, since neither S6F4 or S6F8 are
defined, this is not automatically processed in bop
either. However, it is possible for users to use
VIDDescription to make it able to handle S6F4 and S6F8.

■Declaration
■Visual C++ 6

BSTR GetVIDDescription(long lVID);
void SetVIDDescription(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDDescription(lVID As Long) As String

Format Description
lVID VID。

■Related Items
S1F12 Status Variable Namelist Reply(SVNRR), S2F30
Equipment Constant Namelist(ECN)

7.1.53 VIDMax

■Description
Maximum value of VID. ECMAX of S2F30 Equipment Constant
Namelist(ECN).

■Declaration
■Visual C++ 6

BSTR GetVIDMax(long lVID);
void SetVIDMax(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDMax(lVID As Long) As String

Format Description
lVID VID。

■Related Items
S2F30 Equipment Constant Namelist(ECN)

7.1.54 VIDMin

■Description
Minimum value of VID. ECMIN of S2F30 Equipment Constant
Namelist(ECN).

■Declaration
■Visual C++ 6

BSTR GetVIDMin(long lVID);
void SetVIDMin(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDMin(lVID As Long) As String

Format Description
lVID VID。

■Related Items
S2F30 Equipment Constant Namelist(ECN)

7.1.55 VIDNodeType

■Description
VID SECS-II node format. It is one of the following.

Node Format Val. Description
NodeTypeList 1 List
NodeTypeBinary 2 Binary
NodeTypeBoolean 3 Boolean
NodeTypeAscii 4 ASCII char. string
NodeTypeJis 5 JIS-8 code
NodeTypeLong8 6 8-byte signed integer
NodeTypeChar 7 1-byte signed integer
NodeTypeShort 8 2-byte signed integer
NodeTypeLong 9 4-byte signed integer
NodeTypeDouble 10 8-byte floating pt. no.
NodeTypeFloat 11 4-byte floating pt. no.
NodeTypeDWord8 12 8-byte unsigned integer
NodeTypeByte 13 1-byte unsigned integer
NodeTypeWord 14 2-byte unsigned integer
NodeTypeDWord 15 4-byte unsigned integer
NodeTypeAscii2 16 2-byte ASCII char. string

When VIDNodeType is read, if the value is 0 it
means”disabled format”.

■Declaration
■Visual C++ 6

short GetVIDNodeType(long lVID);
void SetVIDNodeType(long lVID, short nNewValue);

■Visual Basic 6

Property VIDNodeType(lVID As Long) As Integer

Format Description
lVID VID。

■Related Items
NodeType

7.1.56 VIDRawValue

■Description
VID raw SML character string. If a n SML character string
is set here, when an event is sent by S6F11 Send Event
Report(ERS), the message will be assembled in accordance
with the report. At this time, the individual VID values
are used by this VIDRawValue. Stream and function cannot
be written in SML.

In bop, since it does not check for grammatical errors
and VIDNodeType are not checked, so it is necessary to
set the correct SML. To set values in accordance with
the VIDNodeType format, use VIDValue.

■Declaration
■Visual C++ 6

BSTR GetVIDRawValue(long lVID);
void SetVIDRawValue(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDRawValue(lVID As Long) As String

Format Description
lVID VID。

■Related Items
SML, VIDValue, VIDNodeType

Copyright©2004 Jazz Soft, Inc.

 - 45 -

7.1.57 VIDType

■Description
VID type. This is one of the following.

Type Description
1 ECID。
2 SVID。
4 DVID。

It is not possible to specify a type other than the above.

■Declaration
■Visual C++ 6

short GetVIDType(long lVID);
void SetVIDType(long lVID, short nNewValue);

■Visual Basic 6

Property VIDType(lVID As Long) As Integer

Format Description
lVID VID。

7.1.58 VIDUnit

■Description
VID unit. UNITS in S2F30 Equipment Constant
Namelist(ECN).

■Declaration
■Visual C++ 6

BSTR GetVIDUnit(long lVID);
void SetVIDUnit(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDUnit(lVID As Long) As String

Format Description
lVID VID。

■Related Items
S2F30 Equipment Constant Namelist(ECN)

7.1.59 VIDValue

■Description
VID value. SML is created in VIDRawValue in accordance
with the format specified in VIDNodeType.

■Declaration
■Visual C++ 6

BSTR GetVIDValue(long lVID);
void SetVIDValue(long lVID, LPCTSTR lpszNewValue);

■Visual Basic 6

Property VIDValue(lVID As Long) As String

Format Description
lVID VID。

7.1.60 ViewStyle

■Description
Screen display style. This is one of the following.

Style Val. Description

RedrawNone 0 Nothing displayed.
RedrawHsms 1 Only HSMS physical connection

status displayed.
RedrawGem 2 Only GEM logical connection

status displayed.
RedrawNormal 3 Everything displayed.

■Declaration
■Visual C++ 6

short GetViewStyle();
void SetViewStyle(short nNewValue);

■Visual Basic 6

ViewStyle As Integer

7.1.61 WaitBit

■Description
W (Wait) bit.

■Declaration
■Visual C++ 6

BOOL GetWaitBit();
void SetWaitBit(BOOL bNewValue);

■Visual Basic 6

WaitBit As Boolean

7.1.62 WorkSpace

■Description
Working area of operand message. In bop, 3 WorkSpace areas
have been provided. Each one is set to “primary message”
Reply=true and “secondary message” Reply=false, so it
is possible to handle a total of 6 messages. However,
it is basically set up to be able to process just using
WorkSpace0.

WorkSpace Reply Purpose
0 false Send/receive message
0 true Reply to received message
1 false Sent messages
1 true Can be set as desired
2 false Can be set as desired
2 true Can be set as desired

When a message is received and communicated about via
Received Event , the received message is stored in 、
WorkSpace0 Reply=false. Please note that even if the
received message is a secondary message, it will be stored
in Reply=false. The moment there is notification of an
event, WorkSpace0 Reply=false is selected, but when
processing returns from the event handler to bop, it will
return to the previously selected WorkSpace and Reply.

For primary messages, the “recommended reply” is
alsostored in Reply=true. If replying in this status,
it is OK just to switch Reply to true and call Send, but
it is also possible to edit the contents.

When sending a primary message, use WorkSpace0
Reply=false. When sending is complete, this will be
communicated by a Sent Event, and at that time, WorkSpace1
Reply=false will be selected.

■Declaration
■Visual C++ 6

short GetWorkSpace();
void SetWorkSpace(short nNewValue);

Copyright©2004 Jazz Soft, Inc.

 - 46 -

■Visual Basic 6

WorkSpace As Integer

■Related Items
Reply, Send, Received

Copyright©2004 Jazz Soft, Inc.

 - 47 -

7.2 Method
7.2.1 Configure

■Description
Displays setting screen

■HSMS Tab

Item Description
Passive Entity Checkmark indicates a passive entity

(server). No checkmark indicates an
active entity (client)

IP Address or
Computer Name

Selects whether IP address
（xxx.xxx.xxx.xxx） or computer name.
This setting is unnecessary for a
passive entity, so entry of this item
will not be possible.

Port Number Port number of other side. Since this
is not known until a connection is
made from the other side in the case
of a passive entity, entry of this
item will not be possible.

Local Port
Number

Local (self) port number. If 0 is set
in the case of an active entity, an
open port number will be assigned
automatically. If other than 0 is
specified, it will not be possible
to re-connect for several minutes in
some cases.

Device ID
(Decimal)

Device ID. Settable within the range
of 0～32767.

Discard
duplicated
message block.

When checked, if the same message is
continuously received, messages
arriving later will be disregarded.

■Timeout Tab

Item Description
T1 （Not used）
T2 （Not used）
T3 T3 timeout in 1-second increments
T4 （Not used）
T5 T5 timeout in 1-second increments
T6 T6 timeout in 1-second increments
T7 T7 timeout in 1-second increments
T8 T8 timeout in 1-second increments

■Log Tab

Item Description
Enable logging When checked, will write to log file.

When unchecked, the following items
cannot be entered.

Enable
communication
log

When checked, will record to
communication log.

File name Log file name. No suffix may be added.
The suffix .log will be added
automatically.

Number of
backup files

Number of back-up files. Back-up
filenames are as follows.
Filename001.log
Filename002.log

Maximum size of
each file

Maximum size of log files. If this
size is exceeded, a back-up file
will be created. In 1-kilobyte
units.

■Revision Tab

Item Description
MDLN MDLN character string in messages

such as S1F13 Establish Communication
Request(CR). Equipment model name.
max 6 bytes.

Copyright©2004 Jazz Soft, Inc.

 - 48 -

SOFTREV SOFTREV character string. Revision
(version) number. Max 6 bytes.

■State Tab

Item Description
Initial
communication
state

Comm status at time of application
launch. Select one of the following.
Disabled
Enabled

Initial
control state
(Transition
#1)

Control status at time of launch.
Status of transition at Status
Transition #1. Select one of the
following.
Offline
Online

Initial
offline state
(Transition
#2)

Offline status at time of launch.
Status of transition at Status
Transition #2. Select one of the
following.
Equipment offline
Attempt online
Host offline

Default
offline state
(Transition
#4)

Default offline status. Status of
transition at Status Transition #4.
Select one of the following.
Equipment offline
Host offline

Default online
state
(Transition
#7)

Default online status. Status of
transition at Status Transition #7.
Select one of the following.
Online local
Online remote

■Predefined VID Tab

Item Description
Predefined VID
Name

Defined VID name

VID# VID number
Description Description
Edit... “Edit” button. When one defined VID

is selected and this button is
pressed, the following dialogue box
will be displayed.

Here, a list of defined VID is shown in the VID tab. Select

a VID with the same meaning as a defined VID and press
the OK button.

Many defined VID are displayed in the list, but only the
following are actually used in the current version.

Item Description
Establish
Communications
Timeout

EC timeout. This is the spacing for
re-sending S1F13 Establish
Communication Request(CR) when
communication is not established.

Time Format Time format. Either 12 or 16 bytes.
Control State Control status
Process State Processing status

■Predefined CEID Tab

Item Description
Predefined
CEID Name

Defined CEID name

CEID# CEID number
Description Description
Edit... “Edit” button. When a defined CEID is

selected and this button is pressed,
the following dialogue box will be
displayed.

Copyright©2004 Jazz Soft, Inc.

 - 49 -

Here, defined CEID are displayed in a list in the CEID
tab. Select a CEID with the same meaning as the defined
CEID and press the OK button.

■Clock Tab

Item Description
Adjust PC clock
on S2F31

Selects whether or not to change the
PC clock when S2F31 is received.

Date and time
format

Date/time format. Prior to setting
this item, it must be registered as
a Predefined VID. If it is
registered, a VID number will be
displayed.

■CEID Tab

Item Description
CEID# CEID number
Enable Yes=Enabled; No=Disabled
Linked Report# Linked report number
Description Description

Add New... Add new
Edit... Edit selected CEID
Delete Delete selected CEID

When the “Add New...” button is pressed, the following
dialogue box will be displayed.

Item Description
Description CEID description
CEID# CEID number. A number one greater than

the largest registered CEID goes in
as the default.

Enable Checked = Enabled; Unchecked=
Disabled.

Lined Report# Linked report number. Report
definition is set by communication.

When one CEID is selected and the “Edit...” button is
pressed, the following dialogue box will be displayed.

We can see that in this CEID, Report “#1” and “#2” are
defined.

When one CEID is selected and the “Delete” button is
pressed, the following message box will be displayed.

When the OK button is pressed, the selected CEID is
deleted.

■VID Tab

Copyright©2004 Jazz Soft, Inc.

 - 50 -

Item Description
VID# VID number
Type Variable type. There are the

following 3 types
EC Equipment constant
SV System variable
DV Data variable

Node Node form. Expressed in C++ style
List List structure
Binary Binary
bool Bookean algebra
Ascii ASCII char. string
JIS 8 JIS8 char. string

(half-size katakana)
int64 Unsigned 8-byte integer
char Unsigned 1-byte integer
short Unsigned 2-byte integer
long Unsigned 4-byte integer
double 8-byte floating pt. no.
float 4-byte floating pt. no.
uint64 Signed 8-byte integer
BYTE Signed 1-byte integer
WORD Signed 2-byte integer
DWORD Signed 4-byte integer
MBCS 2-byte char. string

Description Description
Min Minimum value
Max Maximum value
Default Default value
Unit Units
SML Actual variable value SML expression
ECID Checkmark indicates ECID shown in

list. Unchecked indicates not shown.
SVID Checkmark indicates SVID shown in

list. Unchecked indicates not shown.
DVID Checkmark indicates DVID shown in

list. Unchecked indicates not shown.
Add New... Add new
Edit... Edit selected VID
Delete Delete selected VID

When the “Add New...” button is pressed the following
dialogue box will be displayed.

Item Description
VID# VID number. A number one greater than

the largest registered VID number
goes in as the default.

Type Variable type
Node Type Node format. Select from the

following.
List List structure
Binary Binary
Boolean Boolean algebra
Ascii ASCII char. string
JIS8 JIS8 char. string

(half-size katakana)
I8 Unsigned 8-byte integer
I1 Unsigned 1-byte integer
I2 Unsigned 2-byte integer
I4 Unsigned 4-byte integer
F8 8-byte floating pt. no.
F4 4-byte floating pt. no.
U8 Signed 8-byte integer
U1 Signed 1-byte integer
U2 Signed 2-byte integer
U4 Signed 4-byte integer
Ascii2 2-byte char. string

Description Description
Minimum Minimum value
Maximum Maximum value
Default Default value
Unit Units
Raw Value Actual variable number SML expression

When one VID is selected and the “Edit...” button is
pressed, the following dialogue box will be displayed.

Copyright©2004 Jazz Soft, Inc.

 - 51 -

When one VID is selected and the “Delete” button is
pressed, the following message box will be displayed.

When the OK button is pressed, the selected VID will be
deleted.

The data is actually registered only when the OK button
in the setting dialogue box is pressed. For this reason,
when using contents registered in the VID tab in a
Predefined VID tab, you must press the OK button once
to register, and then call the Configure method again.

■ALID Tab

Item Description
ALID# ALID number
Enable Yes= Enabled; No= Disabled
Code Alarm code（ALCD）。
Text Alarm text（ALTX）。
Add New... Add new
Edit... Edit selected ALID
Delete Delete selected ALID

When the “Add New...” button is pressed, the following

dialogue box will be displayed.

When one ALID is selected and the “Edit...” button is
pressed, the following dialogue box will be displayed.

When one ALID is selected and the “Delete” button is
pressed, the following message box will be displayed.

When the OK button is pressed, the selected ALID will
be deleted.

■Declaration
■Visual C++ 6

BOOL Configure(LPCTSTR lpszCaption, long lOptionFlag);

■Visual Basic 6

Function Configure(lpszCaption As String, lOptionFlag As Long) As Boolean

Argument Description
lpszCaption Dialogue box caption title. If

thisvalue is NULL or a character
string with a length of 0, it will
display as “Preferences”.

lOptionFlag Option flag

At least one or more of the values below are specified
as an option flag. The specified tab will be displayed.
The numbers in the list below are expressed in
hexadecimal format.

Value Tab Displayed
0x0001 Model
0x0002 HSMS
0x0004 Timeout
0x0008 Revision
0x0010 State Model
0x0020 Clock
0x0040 CEID
0x0080 VID
0x0100 ALID
0x0200 Log File
0x0400 Predefined VID
0x0800 Predefined EID

Copyright©2004 Jazz Soft, Inc.

 - 52 -

Tabs are expected to increase in number in the future,
as new functions are added. For this reason, set -1 to
display all tabs.

■Return Value

Format Description
BOOL Returns True if a setting was changed and False

if a setting was not changed.

7.2.2 DefProc

■Description
Causes processing of default when message received.

■Declaration
■Visual C++ 6

BOOL DefProc();

■Visual Basic 6

Function DefProc() As Boolean

■Return Value

Format Description
BOOL Returns true if processing was performed and

false if not performed.

7.2.3 IndexToALID

■Description
Converts index to ALID

■Declaration
■Visual C++ 6

long IndexToALID(long lIndex);

■Visual Basic 6

Function IndexToALID(lIndex As Long) As Long

Argument Description
lIndex Index beginning from 0

■Return Value

Format Description
long Converted ALID. If index is out of range, a

negative value will be returned.

7.2.4 IndexToCEID

■Description
Converts index to CEID

■Declaration
■Visual C++ 6

long IndexToCEID(long lIndex);

■Visual Basic 6

Function IndexToCEID(lIndex As Long) As Long

Argument Description
lIndex Index beginning from 0

■Return Value

Format Description
long Converted CEID. If index is out of range, a

negative value will be returned.

7.2.5 IndexToVID

■Description
Converts index to VID

■Declaration
■Visual C++ 6

long IndexToVID(long lIndex);

■Visual Basic 6

Function IndexToVID(lIndex As Long) As Long

Argument Description
lIndex Index beginning from 0

■Return Value

Format Description
long Converted VID. If index is out of range, a

negative value will be returned.

7.2.6 InvokeAlarm

■Description
An alarm is generated. Specifically, S5F1 Alarm Report
Send(ARS) is sent to the Host. This is not sent if ALID
is not registered or is disabled.

No matter what number is specified in sALCD, the first
7 bits will be disregarded. As ALCD is in binary format,
it only has 8 bits. Therefore, only the 8th bit is actually
used in ALCD. If this bit is 1, it means an alarm was
generated; if 0, it means an alarm was cleared.

To send “alarm clear”, there must previously have been
an “alarm generation”. When “alarm generation” is sent,
within bop an “uncleared flag” will be set versus that
ALID. If this “uncleared flag” has not been set, it is
not possible to send “alarm clear”. When “alarm clear”
is send, the “uncleared flag” is reset.

As the “uncleared flag” only records on/off as data, even
if an “alarm generation” is sent twice in succession,
one “alarm clear” sent will reset the “uncleared flag”.

The setting information for “uncleared flags” is recorded
in a file so that it can be recovered even if an
application has been closed.

■Declaration
■Visual C++ 6

BOOL InvokeAlarm(long lALID, short sALCD);

■Visual Basic 6

Function InvokeAlarm(lALID As Long, sALCD As Integer) As Boolean

Argument Description
lALID ALID. ALID must be registered

beforehand.
sALCD ALCD. Only the 8th bit is actually used.

■Return Value

Format Description
BOOL Returns true if an alarm was sent and false

if not sent.

Copyright©2004 Jazz Soft, Inc.

 - 53 -

7.2.7 InvokeEvent

■Description
Generates an event. Specifically, this sends S6F11 Event
Report Send(ERS) to the Host.。

If a report is linked to an event, the report is also
automatically generated.

■Declaration
■Visual C++ 6

BOOL InvokeEvent(long lCEID);

■Visual Basic 6

Function InvokeEvent(lCEID As Long) As Boolean

Format Description
lCEID CEID。

■Return Value

Format Description
BOOL Returns true if an event was sent and false

if not sent.

7.2.8 IsValidVID

■Description
Verifies whether VID is correct.

■Declaration
■Visual C++ 6

BOOL IsValidVID(long lVID);

■Visual Basic 6

Function IsValidVID(lVID As Long) As Boolean

Format Description
lVID VID。

■Return Value

Format Description
BOOL Returns true if a VID was registered and false

if not registered.

7.2.9 Load

■Description
Loads saved .bop files.

■Declaration
■Visual C++ 6

BOOL Load();

■Visual Basic 6

Function Load() As Boolean

Format Description
BOOL Returns true if loading was successful and

false if unsuccessful.

7.2.10 LoadIniFile

■Description
Loads saved .ini files.

■Declaration
■Visual C++ 6

BOOL LoadIniFile();

■Visual Basic 6

Function LoadIniFile() As Boolean

Format Description
BOOL Returns true if loading was successful and

false if not successful.

7.2.11 RegisterALID

■Description
Newly registers ALID. As this impacts settings in S5F3
Enable/Disable Alarm Send(EAS), in some cases the use
of RegisterALID is not recommended. The basic sequence
is to add Configure beforehand, and read using Load.

■Declaration
■Visual C++ 6

BOOL RegisterALID(long lALID, short sALCD, LPCTSTR lpszALTX);

■Visual Basic 6

Function RegisterALID(lALID As Long, sALCD As Integer, lpszALTX As String) As
Boolean

Format Description
lALID ALID
sALCD ALCD
lpszALTX ALTX

■Return Value

Format Description
BOOL Returns true if registration was successful

and false if unsuccessful.

7.2.12 RegisterVID

■Description
Newly registers VID.

■Declaration
■Visual C++ 6

BOOL RegisterVID(long lVID, short sType, short sNodeType, LPCTSTR lpszMin,
LPCTSTR lpszMax, LPCTSTR lpszDefault, LPCTSTR lpszUnit, LPCTSTR
lpszDescription);

■Visual Basic 6

Function RegisterVID(lVID As Long, sType As Integer, sNodeType As Integer, lpszMin
As String, lpszMax As String, lpszDefault As String, lpszUnit As String, lpszDescription
As String) As Boolean

Format Description
lVID VID。
sType Type
sNodeType SECS-II node format
lpszMin ECMIN
lpszMax ECMAX
lpszDefault ECDEF
lpszUnit UNITS
lpszDescription ECNAME

sType is one of the following.

Type Description

Copyright©2004 Jazz Soft, Inc.

 - 54 -

1 ECID。
2 SVID。
4 DVID。

sNodeType is one of the following.

Node Format Value Description
NodeTypeList 1 List
NodeTypeBinary 2 Binary
NodeTypeBoolean 3 Boolean
NodeTypeAscii 4 ASCII char. string
NodeTypeJis 5 JIS-8 code
NodeTypeLong8 6 8-byte signed integer
NodeTypeChar 7 1-byte signed integer
NodeTypeShort 8 2-byte signed integer
NodeTypeLong 9 4-byte signed integer
NodeTypeDouble 10 8-byte floating pt. no.
NodeTypeFloat 11 4-byte floating pt. no.
NodeTypeDWord8 12 8-byte unsigned integer
NodeTypeByte 13 1-byte unsigned integer
NodeTypeWord 14 2-byte unsigned integer
NodeTypeDWord 15 4-byte unsigned integer
NodeTypeAscii2 16 2-byte ASCII char. string

■Return Value

Format Description
BOOL Returns true if registration was successful

and false if unsuccessful.

■Related Items
VIDType, VIDNodeType, VIDMin, VIDMax, VIDDefault,
VIDUnit, VIDDescription

7.2.13 Save

■Description
Saves setting to .bop files.

■Declaration
■Visual C++ 6

BOOL Save();

■Visual Basic 6

Function Save() As Boolean

Format Description
BOOL Returns true if saving was successful and false

if saving was unsuccessful.

7.2.14 Send

■Description
Sends messages selected in WorkSpace and Reply.

■Declaration
■Visual C++ 6

BOOL Send();

■Visual Basic 6

Function Send() As Boolean

Format Description
BOOL Returns true if sent successfully and false

if sending was unsuccessful.

■Related Items
WorkSpace, Reply

7.2.15 UnregisterALID

■Description
Deletes ALID. Deleting will fail if ALID is not
registered.

■Declaration
■Visual C++ 6

BOOL UnregisterALID(long lALID);

■Visual Basic 6

Function UnregisterALID(lALID As Long) As Boolean

Format Description
lALID ALID

■Return Value

Format Description
BOOL Returns true if deleted successfully and

falseif not deleted successfully.

7.2.16 UnregisterVID

■Description
Deletes VID. Deleting will fail if VID is not registered.

■Declaration
■Visual C++ 6

BOOL UnregisterVID(long lVID);

■Visual Basic 6

Function UnregisterVID(lVID As Long) As Boolean

Format Description
lVID VID

■Return Value

Format Description
BOOL Returns true if deleted successfully and false

if not deleted successfully.

7.2.17 WriteToLogFile

■Description
Writes to log files.

■Declaration
■Visual C++ 6

void WriteToLogFile(LPCTSTR lpszText);

■Visual Basic 6

Sub WriteToLogFile(lpszText As String)

Format Description
lpszText Writing character string

Copyright©2004 Jazz Soft, Inc.

 - 55 -

7.3 Events
7.3.1 CommunicationStateChanged

■Description
Communication status changed. Communication status is
one of the following.

Name Value Description
Disabled 0 Communication disabled
NotCommunicating 1 Communication aborted
Communicating 2 Communication in progress

■Declaration
■Visual C++ 6

void FireCommunicationStateChanged(short sNewState, short sPrevState);

■Visual Basic 6

Event CommunicationStateChanged(sNewState As Integer, sPrevState As Integer)

Format Description
sNewState New status
sPrevState Prior status

7.3.2 Connected

■Description
Connected with partner via communication.

■Declaration
■Visual C++ 6

void FireConnected(LPCTSTR lpszIPAddress, long lPortNumber);

■Visual Basic 6

Event Connected(lpszIPAddress As String, lPortNumber As Long)

Format Description
lpszIPAddress IP address of communication partner
lPortNumber TCP port no. of communication partner

7.3.3 ConnectionStateChanged

■Description
Communication status changed.

Name Value Explanation
NotConnected 0 Not connected
NotSelected 1 Connected（unselected）
Selected 2 Connected (selected)

■Declaration
■Visual C++ 6

void FireConnectionStateChanged(short sNewState, short sPrevState);

■Visual Basic 6

Event ConnectionStateChanged(sNewState As Integer, sPrevState As Integer)

Format Description
sNewState New status
sPrevState Prior status

7.3.4 ControlStateChanged

■Description
Control status changed. Control status is one of the
following.

Name Value Description
EquipmentOffLine 0 Equip. offline
AttemptOnLine 1 Attempt online
HostOffLine 2 Host offline
OnLineLocal 3 Online local
OnLineRemote 4 Online remote

■Declaration
■Visual C++ 6

void FireControlStateChanged(short sNewState, short sPrevState);

■Visual Basic 6

Event ControlStateChanged(sNewState As Integer, sPrevState As Integer)

Format Description
sNewState New status
sPrevState Prior status

7.3.5 Disconnected

■Description
Disconnected from communication with partner

■Declaration
■Visual C++ 6

void FireDisconnected(LPCTSTR lpszIPAddress, long lPortNumber);

■Visual Basic 6

Event Disconnected(lpszIPAddress As String, lPortNumber As Long)

Format Description
lpszIPAddress IP address of communication partner
lPortNumber TCP port no. of communication partner

7.3.6 Errors

■Description
Error occurred.

■Declaration
■Visual C++ 6

void FireErrors(short sErrorCode, LPCTSTR lpszErrorText);

■Visual Basic 6

Event Errors(sErrorCode As Integer, lpszErrorText As String)

Format Description
sErrorCode Error code
lpszErrorText Error character string

7.3.7 Received

■Description
A message was received. Normally, DefProc is called and
message processing is caused in bop. To process a message
without bop, it is also possible to trigger unique
processing.

The received message is set in WorkSpace0 Reply=false.
To analyze a received message, they may be processed
as-is. To reply to a received message, set Reply to true
and edit the reply portion. Following this, when DefProc
is called from the event handler function, if the message
requires a reply a reply message written in the reply
section will be sent.

Copyright©2004 Jazz Soft, Inc.

 - 56 -

■Declaration
■Visual C++ 6

void FireReceived(LPCTSTR lpszIPAddress, long lPortNumber);

■Visual Basic 6

Event Received(lpszIPAddress As String, lPortNumber As Long)

Format Description
lpszIPAddress IP address of communication partner
lPortNumber TCP port no. of communication partner

■Related Items
WorkSpace, Reply, Send, DefProc

7.3.8 Sent

■Description
A message was sent

■Declaration
■Visual C++ 6

void FireSent();

■Visual Basic 6

Event Sent()

■Related Items
WorkSpace, Reply, Send

7.3.9 VIDChanged

■Description
A message was sent.

■Declaration
■Visual C++ 6

void FireVIDChanged(long lVID);

■Visual Basic 6

Event VIDChanged(lVID As Long)

Format Description
lVID VID

Copyright©2004 Jazz Soft, Inc.

 - 57 -

8 SML Reference
8.1 General Points of Note
8.1.1 White Space
White spaces (spaces, tabs, line breaks, restore codes)
only serve the purpose of spacing characters. For this
reason, it is possible to insert appropriate tabs and
line breaks in order to enhance legibility. Please note
that they will be treated as characters when located
within comments or character strings.

8.1.2 Comments
Comments consist of everything following an asterisk (*)
until the end of that line. However, this does not apply
to asterisks forming part of a character string.

8.1.3 Numbers
Numbers consist of the characters from 0～9, and the minus
sign (-). To express in hexadecimal format, add ’0x’
to the beginning. In this case, it is also possible to
use characters from a～f and A～F. Decimals may also be
written in Western style, skipping the “0” at the
beginning of the number (“0.9” -> “.9”). Index numbers
expressions may also be used. It is also possible to use
true（=1） and false（=0） as reserved words.

8.1.4 Character String Expressions
Character strings are located in ranges bounded by single
quotation marks (‘). It is not possible to include line
break codes and single quotation marks themselves inside
a character string. For this reason, if these characters
must be included for some reason, use a hexadecimal
expression such as “0x0a”.

8.2 SML Grammar
Bolded sections in descriptive passages indicate that
those characters are to be written. Basically, these
characters may be either upper-case or lower-case
characters. Italic characters reference individual
descriptions. Sections enclosed in brackets ([]) can be
omitted.

8.2.1 Syntax

[sxxfyy[w]] Body

Element Description
xx Stream number. Do not add a space between the

characters “s” and “f”.
yy Function number. Do not add a space

betweenthecharacters “f” and ”w”.
w Wait bit. Written as “w” when specifying. May

be omitted.
Body Message body.

Since the stream, function and wait bit are recognized
as a single combined unit, do not add spaces or line break
code between these. It is also possible to omit stream
and function and write only the message body.

8.3 Message Body
The message body has a hierarchical structure.

SML
Expression

Description

l List
b Binary
bool Boolean
a ASCII char. string
j JIS-8
a2 2-byte ASCII char. string
i8 8-byte signed integer
i1 1-byte signed integer

i2 2-byte signed integer
i4 4-byte signed integer
f8 8-byte floating pt. no.
f4 4-byte floating pt. no.
u8 8-byte unsigned integer
u1 1-byte unsigned integer
u2 2-byte unsigned integer
u4 4-byte unsigned integer

8.3.1 List

{[l [Number]]Body}
<[l [Number]]Body>

Element Description
Number List number. Provided only for compatibility

with SECSIM. This number is disregarded.
Body Message body. Other items can be lined up.

8.3.2 Binary

<b [Numbers]>

Element Description
Numbers Number. For example,

written as follows:

<b 0xff 0x3e 255 0>

8.3.3 Boolean

<bool [Numbers]>
<boolean [Numbers]>

Element Description
Numbers Number. For example,

written as follows:

<bool true false 1 0>

8.3.4 ASCII Character Strings

<a [Strings]>

Element Description
Strings Character strings. It is possible to break

apart long character strings when
writing. It is also possible to write in
direct character code. For example, an SML
such as that below:

<a ‘ABC’ ‘DEF’ ‘012’ 0x33 ‘4’ 53 54 ‘789’>

would be the same as the following:

<a ‘ABCDEF0123456789’>

8.3.5 2-byte Character Strings

Copyright©2004 Jazz Soft, Inc.

 - 58 -

<a2 [Strings]>

Element Description
Strings 2-byte character string. The current

version only accommodates MBCS.

8.3.6 JIS-8 Character Strings

<j [Strings]>

Handled in the same fashion as ASCII format.3

Element Description
Strings Character string. It is possible to break

up long character strings when writing. It
is also possible to write direct character
code. For example, an SML such as the one
below:

<a ‘ABC’ ‘DEF’ ‘012’ 0x33 ‘4’ 53 54 ‘789’>

Would be the same as the following:

<a ‘ABCDEF0123456789’>

8.3.7 Integers

<i1[Numbers]>
<i2[Numbers]>
<i4[Numbers]>
<i8[Numbers]>
<u1[Numbers]>
<u2[Numbers]>
<u4[Numbers]>
<u8[Numbers]>

Elements Description
Numbers Numbers have the following meanings.

i1 Signed 8-bit integer
i2 Signed 16-bit integer
i4 Signed 32-bit integer
i8 Signed 64-bit integer
u1 Unsigned 8-bit integer
u2 Unsigned 16-bit integer
u4 Unsigned 32-bit integer
u8 Unsigned 64-bit integer

It is possible to line up several numbers
together when writing. In this case, they
will become an array. For example, they
could be written as follows:

<i1 1 0x02 3>

In the current version it is not possible
to enter very large values such as i8 or u8.

8.3.8 Floating Point Numbers

<f4[FNumbers]>
<f8[FNumbers]>

3 I have never personally seen a message using JIS-8.

Element Description
Fnumbers Floating point number. Meanings are as

follows:

f4 32-bit floating point number
f8 64-bit floating point number

For example, these can be written as
follows:

<f4 0 1.0 3.14>

Copyright©2004 Jazz Soft, Inc.

 - 59 -

9 GEM
9.1 Communication Status Model

■Communication Status Diagram

 COMMUNICATIONS

NOT COMMUNICATING

DISABLED

ENABLED

WAIT CR
FROM HOST

WAIT CRA

C

1

EQUIPMENT-INTIATED
CONNECT

HOST-INTIATED
CONNECT

3 2

4

5

678

WAIT DELAY

9

10

14
COMMUNICATING

15

■Communication Status Transitions
Current Status Trigger New Status Operation Comments
1 (Comm. Status） System intialization System Default None System default is setto

either comm. disabled
or comm. enabled.

2 DISABLED
(Comm. Disabled)

Operator switches from
comm. disabled to comm.
enabled.

ENABLED
(Communication
enabled)

None SECS-Ⅱ communication is
enabled.

3 ENABLED
(Comm. Enabled)

Operator switches from
comm. enabled to comm.
disabled.

DISABLED
(Communication
disabled)

None SECS-Ⅱ communication is
is prohibited

4 (Enable Comm.) Enter communication
enabled status

NOT COMMUNICATING
(Communication
aborted)

None Can go into comm. enabled
from system
initialization, or
operator can switch over
to comm. enabled.

5 (Enter
tool-initiated
connection)

(Enter communication
aborted status)

WAIT CRA
(Awaiting
communication
request
acknowledgment)

Com. initialization
Set CommDelay timer to
timeout. Send
S1F13.

Start communication
establishment.

6 WAIT CRA
(Awaiting
communication
request
Acknowledge)

Communication
transaction failure

WAIT DELAY
(Awaiting delay
timer timeout)

Initialize CommDelay
timer. Take all
messages queued for
sending out of queue.

When appropriate,
putmessages taken from
queue into spool buffer
in orderor creation.
Await timer timing out.

7 WAIT DELAY
(Awaiting delay
timer timeout)

Communication delay timer
timed out

WAIT CRA
(Awaiting comm.
request
Acknowledge)

Send S1F13. Await S1F14. May also
receive S1F13 from host.

8 WAIT DELAY
(Awaiting delay
timer timeout)

Receive message other
than S1F13

WAIT CRA
(Awaiting
communication
request
Acknowledge)

Discard message. No
response. Set comm.
delay timer to
“timeout”. Send
S1F13.

This means there is a
chance of establishing
communication.

9 WAIT CRA
(Awaiting comm. req.
acknowledgment)

Receive COMMACK=0 S1F14
which was awaited

COMMUNICATING
(Executing
communication)

None Communication is
established.

10 (Enter
host-initiated
connection)

(Enter communication
aborted status)

WAIT CR FROM HOST
(Awaiting comm.
from from Host)

None Awaiting S1F13 from host.

11 COMMUNICATING
(Execute
communication)

Loss of
communication(Refer to
SEMI E4(SECS-Ⅰ)or SEMI
E37 (HSMS) regarding
definition of comm.
Failure protocol）

NOT COMMUNICATING
(Communication
aborted)

Take out all messages
queued for sending from
queue.

As needed, messages taken
out of queue are put into
spool buffer.

12 WAIT CR FROM HOST
(Awaiting comm.
establishment from
host)

Receive S1F13 COMMUNICATING
(Executing
communication)

Send S1F14 by
COMMACK=0.

Communication is
established.

Copyright©2004 Jazz Soft, Inc.

 - 60 -

9.2 Control Status Model

■Control Status Diagram

Equipment
OFF-LINE Attempt

 ON-LINE

Host
OFF-LINE

C

C

C

LOCAL REMOTE

C

CONTROL

ON-LINE

OFF-LINE

1

2

3

4

5 6

7

8

9

10 11

12

■Control Status Transitions

Current Status Trigger New Status Action Comments
1 （Undefined） Enter control status (system

start-up)
CONTROL
Control status
(subordinate status
depends on settings)

None Depending on default setting,
equipment goes online or
offline.4

2 （Undefined） Enter offline status OFF-LINE
Offline status
(subordinate status
depends on settings)

None Depending on default setting,
equipment may go into any
subordinate status of
offline.

3 EQUIPMENT OFF-LINE

Operator switches to online ATTEMPT ON-LINE

None When in online established
status, note that S1F1 can be
sent at any time.

4 ATEMP ON-LINE

S1F0 New status differs
depending on set
conditions

None Due to loss of communication,
reply timeout, or receipt of
SIF0.5 Depending on settings,
transitions to equipment
offline or host offline.

5 ATTEMPT ON-LINE

Equip. receives awaited S1F2
from host.

ON-LINE

None Notifies that host will
transition to online in
Transition 7.

6 ON-LINE

Operator switches to offline EQUIPMENT OFF-LINE

None “Equipment offline” event
 generated.6 If offline,
 event reply msg.discarded.

7 （Undefined） Enter online status ON-LINE
Online status
(subordinate status
depends on setting of
remote/local switch)

None “Control status local”
or”control status remote”
event generated. Event
report shown in subordinate
status of online actual
transition.

8 LOCAL

Operator sets front-panel
switch to remote

REMOTE

None “Control status remote” event
generated.

9 REMOTE

Operator sets
front-panelswitch to local.

LOCAL

None “Control status local” event
generated.

10 ON-LINE

Equip. receives “offline
switch” (S1F15) msg.from
host（S1F15）

HOST OFF-LINE

None “Equipment offline” event
generated.

11 HOST OFF-LINE

Equipment acknowledges
“online transition request”
（S1F17）

ON-LINE

None Notifies that host will
transition to online in
Transition 7.

12 HOST OFF-LINE

Operator switches to offline EQUIPMENT OFF-LINE

None “Equipment offline” event
generated.

4Condition settings mentioned in Transition 1 and 2 must be single settings. User can thereby select whether to go into equipment offline, attempt
online, host offline, or online.

5Loss of communication is specified in the protocol. Please refer to the corresponding protocol standard for the definition of loss of communication
protocol specifications (Example:SEMI E4 or E37）
6All host-initiated transactions versus the equipment must be completed. To accomplish this, either send the appropriate reply message to the host
prior to the sending of the event message, or send SxF0 after the event message (in other words, after the transaction is over).

Copyright©2004 Jazz Soft, Inc.

 - 61 -

9.3 Processing Status Model

■Processing Status Diagram

PROCESSING ACTIVE

H*

5

１

INT

２

IDLE

４

３

SETUP

READY

PROCESS

EXECUTING

6 7

8

9

10
PAUSE

■Processng Status Transitions

Current Status Trigger New Status Action Comment
1 INT Equipment

initialization
complete

IDLE None None

2 IDLE Set-up command given SETUP None None
3 SETUP Set-up actions all

complete, equipment
ready to receive start
command

READY Action depends on
equipment

None

4 READY Equipment received
start command (START)
from host or operator
console

EXECUTING Action depends on
equipment

None

5 EXECUTING Processing work done IDLE None None
6 PROCESSING ACTIVE Equipment received stop

command (STOP) from host
or operator console

IDLE None None

7 PROCESSING ACTIVE Equipment received
abort command (ABORT)
from host or operator
console

IDLE Action depends on
equipment

None

8 PROCESS Decided to pause
equipment due to alarm
conditions, etc.

PAUSE Action depends on
equipment

This type of abnormality
typically requires an
operator assist.

9 PROCESS Equipment received
pause command (PAUSE)
from host or operator
console

PAUSE Action depends on
equipment

None

10 PAUSE Equipment received
resume command (RESUME)
from host or operator
console

Previous
PROCESS
Sub-state

Action depends on
equipment

None

9.4 Establishing Communication
9.4.1 Establishing Communication from Host

Comment Host Equipment Comment
 Comm. status is comm. enabled（ENABLED）（subordinate status may be anything）
Establish comm.
request

S1F13

 S1F14 Responds with COMMACK=Accepted
 Comm. status=Executing communication（COMMUNICATING）

9.4.2 Establishing Communication from Equipment, Host Acknowledge Reply

Comment Host Equipment Comment
 Comm. status =Comm. aborted（NOT COMMUNICATING）

Copyright©2004 Jazz Soft, Inc.

 - 62 -

 [LOOP]
 [LOOP]……SEND
 S1F13 Establish communication request
Estalish
communication
request
Acknowledge

S1F14

 [IF]S1F14 is received without time-out
 [THEN]Out of loop……SEND
 [ELSE]Delay by time set in Establish Communications-Timeout
 [ENDIF]
 [END_LOOP]……SEND
 [IF]COMMACK=Accept
 [THEN]Comm. status=Executing communication（COMMUNICATING） Out of loop……
 [ELSE]Reset timer for delay, delay by time set in Establish

Communications-Timeout
 [ENDIF]
 [END-LOOP]

Copyright©2004 Jazz Soft, Inc.

 - 63 -

9.5 GEM Compliance

It is not the case that bop provides all GEM functions. For example, for “Material Transfer” it is necessary
to issue S6F11 from the application side, and there is nothing corresponding to this in bop. Although other
manufacturers may put on airs stating in their GEM development support environments that they are “compliant”,
this can only be called overstated advertisement, based on a distortion of the truth.

This product has been designed so that even those items marked as not providing the stated performance may
be added by the user as required. This is why we can mark “GEM compliant” in every item. Please note that
the items “variable data collection”, “trace data collection”, “limit monitoring” and “spooling” are in the
majority of cases probably not requirements.

GEM Compliance
GEM Basic Conditions Provided? GEM Compliance
Status Model Yes No
Equipment Process Status Yes No
Host-Initiated S1F13/F14 Scenario Yes No
Event Notification Yes No
Online Checking Yes No
Error Messaging Yes No
Controls (Operator-Activated) Yes No
Documentation Yes No

Yes7 No

Additional Performance Items Provided? GEM Compliance8
Establishing Communication Yes No Yes No
Dynamic Event Report Setting Changes Yes No Yes No
Variable Data Collection Yes No Yes No
Trace Data Collection Yes No Yes No
Status Data Collection Yes No Yes No
Alarm Management Yes No Yes No
Remote Control Yes No Yes No
Equipment Constant Yes No Yes No
Process Program Management Yes No Yes No
Material Transfer Yes No

Yes No

Equipment Terminal Service Yes No Yes No
Clock Yes No Yes No
Limit Monitoring Yes No Yes No
Spooling Yes No Yes No
Controls (Host-Activated) Yes No Yes No

“Process Program Management” has not been provided because the process program (recipe) structure varies largely
from equipment type to equipment type, but it is not very difficult to add. Only events need to be added for
“Material Transfer”. “Equipment Terminal Service” only involves displaying somewhere in the application, so
this could be added very easily. If these functionalities are added, their corresponding items above could
be marked “Yes” for Provided and “Yes” for GEM Compliance.

The materials necessary for the “Documentation” item have already been stated in this Users Manual, so with
appropriate touching-up and corrections, it could be used to satisfy this item. As the SEMI-issued E.5（SECS-II）
Manual is extremely difficult to read, we have added descriptions of each message to the item dictionary in
this Users Manual.

7It is only possible to mark “Yes” here when all basic GEM conditions have been achieved in accordance with GEM.
8If basic GEM conditions are not GEM-compliant, added performances cannot belisted as GEM-compliant, or in other words, “YES” cannot be marked for
some items.

Copyright©2004 Jazz Soft, Inc.

 - 64 -

10 SECS-II Messages

In the following we have extracted those messages
used by bop from the SEMI E.5（SECS-II） Manual, and
rewritten them for ease of readability.

In bop, there are some items with restrictions on
item format. For example, for CEID, in SEMI E.5,
although it states that either “binary”, “signed
integers” and “unsigned integers” are acceptable,
in actuality the use of u4 format is common. In
binary, only numbers from 0～255 can be accommodated,
and with signed integers there may also be negative
values, so let us say that the SEMI standards are
slightly odd. For this reason, in bop we use a fixed
u4 format.

10.1 Item Dictionary
Item descriptions are given where each message is
discussed, so in the following we may only need to
make notes of a few aspects.

10.1.1 ACKC5

■Description
Acknowledgement code. 1 byte.

Value Description
0 Acknowledged
>0 Error, cannot acknowledge
1~63 Reserved

■Format
b[1]

■Related Messages
S5F2 Alarm Report Acknowledge(ARA)
S5F4 Enable/Disable Alarm Acknowledge (EAA)

10.1.2 ACKC6

■Description
Acknowledgement code. 1 byte.

Value Description
0 Acknowledgement
>0 Error, cannot acknowledge
1~63 Reserved

■Format
b[1]

■Related Messages
S6F12 Event Report Acknowledge(ERA)

10.1.3 ACKC7

■Description
Verification code. 1 byte.

Value Description
0 Authorized
1 Not Authorized
2 Length Error
3 Array Overflow
4 PPID Undefined
5 Mode Error
>5 Other Error
6~63 Reserved

■Format
b[1]

■Related Messages
S7F4 Process Program Acknowledge(PPA)
S7F18 Delete Process Program Acknowledge(DPA)
S7F24 Formatted Process Prog. Acknowledge(FPA)

10.1.4 ACKC7A

■Description
Confirmation code. 1 byte.

Value Description
0 Acknowledged
1 MDLN does not match
2 SOFTREV does not match
3 Invalid CCODE。
4 Invalid PPARM value
5 Other error (displayed via ERRW7)
6~63 Reserved

■Format
i1[1], u1[1]

■Related Messages
S7F27 Process Program Verification Send(PVS)

10.1.5 ACKC10

■Description
Confirmation code. I byte.

Value Description
0 Display acknowledged
1 Message not displayed
2 Cannot use terminal
3~63 Reserved

■Format
b[1]

■Related Message
S10F2 Terminal Request Acknowledge(TRA)
S10F4 Terminal Display, Single Block Acknowledge
(VTA)
S10F6 Terminal Request, Multi Block Acknowledge
(VMA)

10.1.6 AGENT

■Description

■Format
a

■Related Messages
S15F21 Recipe Action Request
S15F22 Recipe Action Acknowledge

10.1.7 ALCD

■Description
Alarm Code

Bit Value Explanation

1 Alarm status generated bit8
0 Alarm status cleared
Alarm Classification Code
0 Not yet used
1 Human safety-related
2 Tool safety-related
3 Parameter control alarm
4 Parameter control error
5 Unrecoverable error
6 Equipment status report
7 Warning flag
8 Cannot verify data
>8 Other category

bit7~1

9~63 Reserved

■Format
b

Copyright©2004 Jazz Soft, Inc.

 - 65 -

■Related Messages
S5F1 Alarm Report Send(ARS)
S5F6 List Alarm Data (LAD)

10.1.8 ALED

■Description
Alarm Enable/Disable Code. 1 byte.

Bit Value Description

1 Alarm enable bit8
0 Alarm disable

■Format
b[1]

■Related Messages
S5F3 Enable/Disable Alarm Send(EAS)

10.1.9 ALID

■Description
Alarm ID

■Format
u4

■Related Messages
S5F1 Alarm Report Send(ARS)
S5F3 Enable/Disable Alarm Send(EAS)
S5F5 List Alarm Request(LAR)
S5F6 List Alarm Data(LAD)

10.1.10 ALTX

■Description
Alarm text. Max 40 characters.

■Format
a

■Related Messages
S5F1 Alarm Report Send(ARS)
S5F6 List Alarm Data(LAD)

10.1.11 ATTRDATA

■Description
Holds special attribute values of particular objects

■Format
l, b, bool, a, i*, f*, u*

■Related Messages
S14F1 Get Attribute Request(GAR)
S14F2 Get Attribute Data(GAD)

10.1.12 ATTRID

■Description
Attribute identifier for objects of particular types

■Format
a, u*

■Related Messages
S14F1 Get Attribute Request(GAR)
S14F2 Get Attribute Data(GAD)

10.1.13 ATTRRELN

■Description
Regulation of relationships between specific limit

values and object instance attribute values
(interest numbers).

Value Description
0 Limit value is equivalent to interest value
1 Limit value not equivalent to interest value
2 Limit value less than interest value
3 Limit value less than interest value, but is

equivalent
4 Limit value is more than interest value
5 Limit value is more than interest value, but

is equivalent
6 Interest value is included in limit value

(part of the set)
7 Interest value is not included in limit

value(not part of the set)
>7 Reserved

■Format
u1

■Related Messages
S14F1 Get Attribute Request(GAR)

10.1.14 CCODE

■Description
Command code. Each command code corresponds to an
individual process operation that can be performed
by the device.

■Format
i2, u2

■Related Messages
S7F23 Formatted Process Program Send(EPS)
S7F26 Formatted Program Data(FPD)
S7F27 Process Program Verification Send(PVS)

10.1.15 CEED

■Description
Collected event or trace enable/disable code. 1
byte.

Value Description
False Disable
True Enable

■Format
bool[1]

■Related Messages
S2F37 Enable/Disable Event Report(EDER)

10.1.16 CEID

■Description
Collected event ID

■Format
u4

■Related Messages
S2F33 Defined Report(DR)
S2F35 Link Event Report(LER)
S2F36 Link Event Report Acknowledge(LERA)
S2F37 Enable/Disable Event Report(EDER)
S2F38 Enable/Disable Event Report Acknowledge
(EERA)
S6F11 Event Report Send(ERS)
S6F15 Event Report Request(ERR)
S6F16 Event Report Data(ERD)

10.1.17 CEPACK

Copyright©2004 Jazz Soft, Inc.

 - 66 -

■Description
Command extended parameter grant. If a particular
value of CPNAME is defined as having a list CEPVAL,
CEPACK will have the same structure as the
corresponding CEPVAL list format so that it is used
by S2F499（Enhanced Remote command）. Other than this
case, CEPACK will be a 1-byte integer.

Value Description
0 No error
1 Parameter name (CPNAME） does not exist
2 Incorrect value is specified in CEPVAL
3 Incorrect format is specified in CEPVAL
4 Parameter name（CPNAME）invalid use
5~63 Reserved

■Format
l, u1[1]

■Related Messages
S2F50 Expansion Remote Command Acknowledge

10.1.18 CEPVAL

■Description
Command extended parameter value.CPNAME value is
used, so when there is a certain way in which CEPVAL
is used, it will always be known. CEPVAL has the
following formats：Single (not list) value（Ex：CPVAL）、
Same format & type single item list, or format item
list.
{
 <CPNAME>
 <CEPVAL>
}

■Format
l, b, bool, a, j, i*, f*, u*

■Related Messages
S2F49 Enhanced Remote Command
S2F50 Enhanced Remote Command Acknowledge

10.1.19 COMMACK

■Description
Communication establishment confirmation code. 1
byte.

Value Description
0 Acknowledged
1 Denied. Retry
2~63 Reserved

■Format
b[1]

■Related Messages
S1F14 Establish Communication Request Acknowledge
(CRA)

10.1.20 CPACK

■Description
Command parameter confirmation code. 1 byte.

Value Description
1 Parameter name（CPNAME） does not exist
2 Illegal value specified for CPVAL use
3 Illegal format specified for CPVAL use
>3 Other equipment-specific error
4~63 Reserved

■Format

9?

b[1]

■Related Messages
S2F42 Host Command Acknowledge(HCA)

10.1.21 CPNAME

■Description
Command parameter name

■Format
a

■Related Messages
S2F41 Host Command Send(HCS)
S2F42 Host Command Acknowledge(HCA)
S2F49 Enhanced Remote Command
S2F50 Enhanced Remote Command Acknowledge

10.1.22 CPVAL

■Description
Command parameter value

■Format
b, bool, a, j, i*, u*

■Related Messages
S2F41 Host Command Send(HCS)
S2F49 Enhanced Remote Command
S2F50 Enhanced Remote Command Acknowledge

10.1.23 DATAID

■Description
Data ID

■Format
u4

■Related Messages
S2F33 Defined Report(DR)
S2F35 Link Event Report(LER)
S2F39 Multi Block Inquire(DMBI)
S2F40 Multi Block Grant(MBG)
S2F49 Enhanced Remote Command
S6F5 Multi Block Data Send Inquire(MBI)
S6F11 Event Report Send(ERS)
S6F16 Event Report Data(ERD)
S15F1 Recipe Management Multi Block Inquire
S15F21 Recipe Action Request
S15F27 Recipe Download Request
S15F29 Recipe Verify Request
S15F35 Recipe Delete Request

10.1.24 DATALENGTH

■Description
Total number of bytes of sent data

■Format
u4

■Related Messages
S2F39 Multi Block Inquire(DMBI)
S6F5 Multi Block Data Send Inquire(MBI)

10.1.25 DRACK

■Description
Defined report acknowledgement code. 1 byte.

Value Description
0 Acknowledged
1 Denied. Insufficient space

Copyright©2004 Jazz Soft, Inc.

 - 67 -

2 Denied. Invalid format
3 Denied. 1 or more RPTID already defined
4 Denied. 1 or more VID does not exist
>4 Other error
5~63 Reserved

■Format
b[1]

■Related Messages
S2F34 Defined Report Grant(DRA)

10.1.26 EAC

■Description
Equipment verification code. 1 byte.

Value Description
0 Acknowledged
1 Denied. 1 or more constants do not exist
2 Denied. Busy
3 Denied. 1 or more constants out of range
>3 Other equipment-specific error
4~63 Reserved

■Format
b[1]

■Related Messages
S2F16 New Equipment Constant Acknowledge (ECA)

10.1.27 ECDEF

■Description
Equipment constant default value

■Format
b, bool, a, j, i*, f*, u*

■Related Messages
S2F30 Equipment Contant Namelist(ECN)

10.1.28 ECID

■Description
Equipment constant ID

■Format
u4

■Related Messages
S2F13 Equipment Contant Request(ECR)
S2F15 New Equipment Constant Send(ECS)
S2F29 Equipment Constant Namelist Request(ECNR)
S2F30 Equipment Contant Namelist(ECN)

10.1.29 ECMAX

■Description
Equipment constant maximum value

■Format
b, bool, a, j, i*, f*, u*

■Related Messages
S2F30 Equipment Constant Namelist(ECN)

10.1.30 ECMIN

■Description
Equipment constant minimum value

■Format
b, bool, a, j, i*, f*, u*

■Related Messages
S2F30 Equipment Constant Namelist(ECN)

10.1.31 ECNAME

■Description
Equipment constant name

■Format
a

■Related Messages
S2F30 Equipment Constant Namelist(ECN)

10.1.32 ECV

■Description
Equipment constant

■Format
b, bool, a, j, i*, f*, u*

■Related Messages
S2F14 Equipment Constant Data(ECD)
S2F15 New Equipment Constant Send(ECS)

10.1.33 EDID

■Description
Data ID expected to be received. The following are
the 3 possibilities.

MEXP EDID EDID
S2F3 <SPID> A[6]
S3F13 <PTN> B[1]
S7F3 <PPID> A[16],B[16]

■Format
b, a, i*, u*

■Related Messages
S9F13 Conversation Timeout(CTN)

10.1.34 ERACK

■Description
Enable/Disable event report. Check code. 1 byte.

Value Description
0 Acknowledged
1 Denied. 1 or more CEID does not exist
>1 Other error
2~63 Reserved

■Format
b[1]

■Related Messages
S2F38 Enable/Disable Event Report Acknowledge
(EERA)

10.1.35 ERRCODE

■Description
Error classification code

Value Description
0 No error
1 Unknown object in object specifier
2 Unknown target object type
3 Unknown object instance
4 Unknown attribute name
5 Read-only attribute. Access denied.
6 Unknown object type
7 Invalid attribute value

Copyright©2004 Jazz Soft, Inc.

 - 68 -

8 Syntax error
9 Validation error
10 Verification error
11 Object specifier in use
12 Incorrect parameter specified
13 Not all parameters needing specification

are specified
14 Requested option not supported
15 In use
16 Processing preparations incomplete
17 Command invalid in current status
18 No changed materials
19 Materials partially processed
20 Materials all processed
21 Recipe setting-related error
22 Failed, during processing
23 Failed, not during processing
24 Failed due to insufficient materials
25 Job abort
26 Job stop
27 Job cancel
28 Cannot change selected recipe
29 Undefined event
30 Duplicate report ID
31 Undefined data report
32 Data report not linked
33 Undefined trace report
34 Duplicate trace ID
35 Too many data reports
36 Sample period out of range
37 Group size too large
38 Recovery action currently invalid
39 Other recovery currently underway which

prevents requested recovery
40 No active recovery action
41 Exceptional recovery failure
42 Exceptional recovery abort
43 Invalid table element
44 Undefined table element
45 Previously set item cannot be deleted
46 Invalid token
47 Invalid parameter
48~63 Reserved

■Format
u*

■Related Messages
S14F2 Get Attribute Data(GAD)
S15F22 Recipe Action Acknowledge
S15F28 Recipe Download Acknowledge
S15F30 Recipe Verify Acknowledge
S15F32 Recipe Unload Data
S15F36 Recipe Delete Acknowledge

10.1.36 ERRTEXT

■Description
Character string showing error displayed in ERRCODE.
Max 80 characters

■Format
a

■Related Messages
S14F2 Get Attribute Data(GAD)
S15F22 Recipe Action Acknowledge
S15F28 Recipe Download Acknowledge
S15F30 Recipe Verify Acknowledge
S15F32 Recipe Unload Data
S15F36 Recipe Deletion Acknowledge

10.1.37 ERRW7

■Description
Character string showin error found in process
program

■Format
a

■Related Messages
S7F27 Process Program Verification Send(PVS)

10.1.38 GRANT

■Description
Grant code. 1 byte.

Value Description
0 Authorized
1 Busy. Retry
2 Receiving space insufficient
3 Duplicate DATAID
>3 Equipment-specific error code
4~63 Reserved

■Format
b[1]

■Related Messages
S2F40 Multi Block Grant(MBG)

10.1.39 GRANT6

■Description
Send Grant. 1 byte.

Value Description
0 Send authorized
1 Busy. Retry request
2 Not required
>2 Other error
3~63 Reserved

■Format
b[1]

■Related Messages
S6F6 Multi Block Grant(MBG)

10.1.40 HCACK

■Description
Host command parameter confirmation code. 1 byte.

Value Description
0 Confirmed. Command was executed
1 Command does not exist
2 Currently cannot execute
3 1 or more parameters invalid
4 Confirmed. Command was executed and

completion announced via event.
5 Denied. Already in requested status
6 Object does not exist
7~63 Reserved

■Format
b[1]

■Related Messages
S2F42 Host Command Acknowledge(HCA)
S2F50 Enhanced Remote Command Acknowledge

10.1.41 LENGTH

■Description
Byte length of service program or process program.

■Format
i*, u*

■Related Messages

Copyright©2004 Jazz Soft, Inc.

 - 69 -

S7F1 Process Program Load Inquire(PPI)
S7F29 Process Program Verification Inquire(PVI)

10.1.42 LINKID

■Description
Used to link operation execution request and
completion message.LINKIDは is set in RMOPID value
included in first request. In exceptional cases, it
is the completion message that will be sent last,
and in those cases it is set to 0.

■Format
u4

■Related Messages
S15F22 Recipe Action Acknowledge
S15F30 Recipe Verify Acknowledge

10.1.43 LRACK

■Description
Link report confirmation code. 1 byte.

Value Description
0 Acknowledged
1 Denied. Insufficient space
2 Denied. Invalid format
3 Denied. 1 or more CEID link already defined
4 Denied. 1 or more CEID does not exist
5 Denied. 1 or more RPTID does not exist
>5 Other error
6~63 Reserved

■Format
b[1]

■Related Messages
S2F36 Link Event Report Acknowledge(LERA)

10.1.44 MDLN

■Description
Equipment model. Max 6 bytes.

■Format
a

■Related Messages
SlF2 Online Data(D)
S1F13 Establish Communication Request(CR)
S1F14 Establish Communication Request Acknowledge
(CRA)
S7F23 Formatted Process Program Send(EPS)
S7F26 Formatted Program Data (FPD)
S7F27 Process Program Verification Send(PVS)

10.1.45 MEXP

■Description
Stream/function which should be received

■Format
a

■Related Messages
S9F13 Conversation Timeout(CTN)

10.1.46 MHEAD

■Description
Message header indicating error

■Format
b

■Related Messages
S9F1 Unrecognized Device ID(UDN)
S9F3 Unrecognized Stream Type (USN)
S9F5 Unrecognized Function Type (UFN)
S9F7 Illegal Data(IDN)
S9F11 Data Too Long(DLN)

10.1.47 OBJACK

■Description
Confirmation code

Value Description
0 Requested data command executed
1 Error
>1 Reserved

■Format
u1

■Related Messages
S14F2 Get Attribute Data(GAD)

10.1.48 OBJID

■Description
Classifier for objects

■Format
a, u*

■Related Messages
S14F1 Get Attribute Request(GAR)
S14F2 Get Attribute Data(GAD)

10.1.49 OBJSPEC

■Description
Text string having an internal format and used to
indicate a particular object instance. This string
is made up of a chain of formatted sub-strings, each
specifying the object type and classifier.
Sub-string formats are made up of the following 4
fields.

 Object type
 Colon“:”
 Object classifier
 Inequality sign“>”

The colon“:”is used at the end of the object type.
The inequality sign“>” is used at the end of the
classifier field. Object types are also determined
through other methods, so this may be omitted. The
final “>” sign is optional.

■Format
a

■Related Messages
S2F49 Enhanced Remote Command
S14F1 Get Attribute Request(GAR)
S14F2 Get Attribute Data(GAD)
S15F21 Recipe Action Request
S15F28 Recipe Download Acknowledge
S15F29 Recipe Validation Request
S15F30 Recipe Verify Acknowledge
S15F35 Recipe Deletion Request

10.1.50 OBJTYPE

■Description
Classifier for object groups or classes. It must be
possible for all of the same type of object to use
the same attribute set.

Copyright©2004 Jazz Soft, Inc.

 - 70 -

■Format
a, u*

■Related Messages
S14F1 Get Attribute Request(GAR)

10.1.51 OFLACK

■Description
Confirmation code for offline requests

Value Description
0 Offline acknowledgement
1~63 Reserved

■Format
b

■Related Messages
S1F16 Offline Request Acknowledge (OFLA)

10.1.52 ONLACK

■Description
Confirmation code for online requests

Value Description
0 Online acknowledgement
1 Online not authorized
2 Equipment already online
3~63 Reserved

■Format
b

■Related Messages
S1F18 Online Request Acknowledge(ONLA)

10.1.53 OPID

■Description
Operation ID. Unique integer greated by operation
requestor, used when multiple completion
confirmations occur.

■Format
u1

■Related Messages
S15F21 Recipe Action Request
S15F29 Recipe Validation Request
S15F30 Recipe Verify Acknowledge

10.1.54 PPARM

■Description
Process parameter. Parameter giving information
necessary to complete processing command. Number or
true/false SECS data item. One or multiple values
or character string.

■Format
bool, a, i*, f*, u*

■Related Messages
S7F23 Formatted Process Program Send(EPS)
S7F26 Formatted Program Data(FPD)
S7F27 Process Program Verification Send(PVS)

10.1.55 PPBODY

■Description
Process program main body. This consists of the
operations to perform to process the materials

received by the equipment, in the equipment’s own
language.

■Format
b, a, i*, u*

■Related Messages
S7F3 Process Program Send(PPS)
S7F6 Process Program Data(PPD)

10.1.56 PPGNT

■Description
Process program Grant status. 1 byte.

Value Description
0 OK。
1 Already has
2 No space
3 Invalid PPID
4 Busy. Retry request
5 Unauthorized
>5 Other error
6~63 Reserved

■Format
b[1]

■Related Messages
S7F2 Process Program Load Grant(PPG)
S7F30 Process Program Verification Grant(PVG)

10.1.57 PPID

■Description
Process Program ID. Max 80 bytes. PPID format is
host-dependent. When used inside the equipment,
PPID is handled as a binary pattern. If there is
no device to display the code that is sent, it will
be in hexadecimal form.

■Format
b, a

■Related Messages
S7F1 Process Program Load Inquire(PPI)
S7F2 Process Program Load Grant (PPG)
S7F3 Process Program Send(PPS)
S7F4 Process Program Acknowledge(PPA)
S7F5 Process Program Request(PPR)
S7F6 Process Program Data(PPD)
S7F17 Delete Process Program Command(DPS)
S7F18 Delete Process Program Acknowledge(DPA)
S7F19 Current EPPD Request(RER)
S7F20 Current EPPD Data(RED)
S7F23 Formatted Process Program Send(EPS)
S7F24 Formatted Process Program Acknowledge(FPA)
S7F25 Formatted Process Program Request(FPR)
S7F26 Formatted Program Data(FPD)
S7F27 Process Program Verification Send(PVS)
S7F30 Process Program Verification Grant(PVG)

10.1.58 RCMD

■Description
Remote control command code or command string

■Format
a

■Related Messages
S2F41 Host Command Send(HCS)
S2F49 Enhanced Remote Command

10.1.59 RCPATTRDATA

Copyright©2004 Jazz Soft, Inc.

 - 71 -

■Description
Recipe attribute contents (values)

■Format
l, b, bool, a, i*, f*, u*

■Related Messages
S15F27 Recipe Download Request
S15F28 Recipe Download Acknowledge
S15F30 Recipe Verify Acknowledge
S15F32 Recipe Unload Data

10.1.60 RCPATTRID

■Description
Non-classifier attribute name (classifier)

■Format
a

■Related Messages
S15F27 Recipe Download Request
S15F28 Recipe Download Acknowledge
S15F30 Recipe Verify Acknowledge
S15F32 Recipe Unload Data

10.1.61 RCPBODY

■Description
Recipe main body

■Format
b, a, i*, u*

■Related Messages
S15F27 Recipe Download Request
S15F32 Recipe Unload Data

10.1.62 RCPCMD

■Description
Indicates actions executed by recipe

Value Description
0~4 Reserved
5 Delete
6~7 Reserved
8 No save
9 Save
10 Validate
11 Link
12 Clear link
13 Authenticate
14 Clear verification
15 Download
16 Upload
17~63 Reserved

■Format
u1

■Related Messages
S15F21 Recipe Action Request
S15F22 Recipe Action Acknowledge

10.1.63 RCPDEL

■Description

Value Description
0 Delete
1 Clear selection
>1 Reserved

■Format
u1

■Related Messages
S15F35 Recipe Delete Request

10.1.64 RCPID

■Description
Recipe classifier. Formatted text complies with
OBJSPEC requirements.

■Format
a

■Related Messages
S15F21 Recipe Action Request
S15F28 Recipe Download Acknowledge
S15F29 Recipe Validation Request
S15F30 Recipe Verify Acknowledge
S15F35 Recipe Delete Request

10.1.65 RCPOWCODE

■Description
Indicates whether or not previously existing recipe
will be overwritten at time of download.

Value Description
TRUE Overwrite
FALSE No overwrite

■Format
bool

■Related Messages
S15F27 Recipe Download Request

10.1.66 RCPSPEC

■Description
Recipe specifier. Recipe object specifier.

■Format
a

■Related Messages
S15F1 Recipe Management Multi Block Inquire
S15F27 Recipe Download Request
S15F31 Recipe Unload Request
S15F32 Recipe Unload Data

10.1.67 RESPEC

■Description
Recipe executor object specifier

■Format
a

■Related Messages
S15F29 Recipe Validation Request
S15F35 Recipe Delete Request

10.1.68 RMACK

■Description
Communicates whether the requested action was
completed successfully, was denied, was completed
due to an error, or was completed with notification
to requestor.

Value Description
0 Successfully completed
1 Cannot execute target action
2 Completed due to error
3 Target action completed and notification

Copyright©2004 Jazz Soft, Inc.

 - 72 -

sent.
4 Target action existence not required

■Format
u1

■Related Messages
S15F22 Recipe Action Acknowledge
S15F28 Recipe Download Acknowledge
S15F30 Recipe Verify Acknowledge
S15F32 Recipe Unload Data
S15F36 Recipe Delete Acknowledge

10.1.69 RMDATASIZE

■Description
Maximum length of multi block message expressed in
bytes. Used to make receiver determine whether or
not expected message exceeds receiver capacity.

■Format
u*

■Related Messages
S15F1 Recipe Management Multi Block Inquire

10.1.70 RMGRANT

■Description
Grant code. Used to grant or deny a request. 1 byte.

Value Description
0 Granted
1 Cannot currently grant. Retry
2 No space
3 Request on standby
4~64 Reserved

■Format
b[1]

■Related Messages
S15F2 Recipe Management Multi Block Grant

10.1.71 RMNSSPEC

■Description
Recipe name space object specifier

■Format
a

■Related Messages
S15F21 Recipe Action Request

10.1.72 RPTID

■Description
Report ID

■Model
u4

■Related Messages
S2F33 Defined Report(DR)
S2F34 Defined Report Acknowledge(DRA)
S2F35 Link Event Report(LER)
S2F36 Link Event Report Acknowledge(LERA)
S6F11 Event Report Send(ERS)
S6F16 Event Report Data(ERD)
S6F19 Individual Report Request(IRR)
S6F20 Individual Report Data(IRD)

10.1.73 SEQNUM

■Description
Command number. Commands specified by numbers
indicating position in process command list. In
process program first command.SEQNUM is 1.

■Format
i*, u*

■Related Messages
S7F27 Process Program Verification Send(PVS)

10.1.74 SHEAD

■Description
Message header related to transaction timer.

■Format
b

■Related Messages
S9F9 Transaction Timer Timeout(TIN)

10.1.75 SOFTREV

■Description
Software revision code. Max 6 bytes.

■Format
a

■Related Messages
SlF2 Online Data(D)
S1F13 Establish Communication Request(CR)
S1F14 Establish Communication Request Acknowledge
(CRA)
S7F23 Formatted Process Program Send(EPS)
S7F26 Formatted Program Data(FPD)
S7F27 Process Program Verification Send(PVS)

10.1.76 SV

■Description
Status variable data

■Format
l, b, bool, a, j, i*, f*, u*

■Related Messages
S1F4 Specify Equipment Status Data(SSD)

10.1.77 SVID

■Description
Status variable ID. Status variables include all
parameters that are sampled over time increments,
such as temperature, amount of consumables, etc.

■Format
u4

■Related Messages
SlF3 Specify Equipment Status Request(SSR)
S1F4 Specify Equipment Status Data(SSD)
S1F11 Status Variable Namelist Request(SVNR)
S1F12 Status Variable Namelist Reply(SVNRR)

10.1.78 SVNAME

■Description
Status variable name

■Format
a

■Related Messages

Copyright©2004 Jazz Soft, Inc.

 - 73 -

S1F12 Status Variable Namelist Reply(SVNRR)

10.1.79 TEXT

■Description
One-line character

■Format
b, a, a2, i*, u*

■Related Messages
S10F1 Terminal Request(TRN)
S10F3 Terminal Display, Single Block (VTN)
S10F5 Terminal Display, Multi Block (VTN)

10.1.80 TIACK

■Description
Time confirmation code. 1 byte.

Value Description
0 OK。
1 Error. Not acknowledged
2~63 Reserved

■Format
b[1]

■Related Messages
S2F32 Date and Time Set Acknowledge(DTA)

10.1.81 TID

■Description
Terminal number. 1 byte.

Value Description
0 Single or primary terminal
>0 Additional terminal at same equipment

■Format
b[1]

■Related Messages
S10F1 Terminal Request(TRN)
S10F3 Terminal Display, Single Block(VTN)
S10F5 Terminal Display, Multi Block(VTN)
S10F7 Multi Block Not Allowed(MNN)

10.1.82 TIME

■Description
Time. 12 or 16 bytes.

12 Bytes
YYMMDDhhmmss
YY Yr 00~99
MM Mo 01~12
DD Day 01~31
hh Hr 00~23
mm Min 00~59
ss Sec 00~59

16 Bytes
YYYYMMDDhhmmsscc
YYYY Yr 0000~9999
MM Mo 01~12
DD Day 01~31
hh Hr 00~23
mm Min 00~59
ss Sec 00~59
cc 1/100 Sec 00~99

■Notes
The 16-byte format is currently an option. The
16-byte format is a requirement for new or updated

implementations on and after January 1, 1998. The
12-byte format will continue to be supported as a
configurable option using the equipment constant
TimeFormat. This item only refers to the required
conditions for format and is unrelated to precision
and accuracy.

■Format
a

■Related Messages
S2F18 Date and Time Data(DTD)
S2F31 Date and Time Set Request(DTS)

10.1.83 UNITS

■Description
Recognises units. Units are those allowed by Items
E5 and 9 (Measurement Units)

■Format
a

■Related Messages
S1F12 Status Variable Namelist Reply(SVNRR)
S2F30 Equipment Constant Namelist(ECN)

10.1.84 V

■Description
Variable data

■Format
l, b, bool, a, j, i*, f*, u*

■Related Messages
S6F11 Event Report Send(ERS)
S6F16 Event Report Data(ERD)
S6F20 Individual Report Data(IRD)

10.1.85 VID

■Description
Variable ID

■Format
u4

■Related Messages
S2F33 Defined Report(DR)
S2F34 Defined Report Acknowledge(DRA)

Copyright©2004 Jazz Soft, Inc.

 - 74 -

10.2 Messages

Primary
Messages

Secondary
Messages

Description

S1F1 S1F2 Online Acknowledge Request
S1F3 S1F4 Specify Equipment Status Request
S1F11 S1F12 Status Variable Namelist Request
S1F13 S1F14 Establish Communication Request
S1F15 S1F16 Request Offline
S1F17 S1F18 Online Request
S2F13 S2F14 Equipment Constant Request
S2F15 S2F16 New Equipment Constant Send
S2F17 S2F18 Date and Time Request
S2F29 S2F30 Equipment Constant Namelist Request
S2F31 S2F32 Date and Time Set Request
S2F33 S2F34 Defined Report
S2F35 S2F36 Link Event Report
S2F37 S2F38 Enable/Disable Event Report
S2F39 S2F40 Multi Block Inquire
S2F41 S2F42 Host Command Send
S2F49 S2F50 Enhanced Remote Command
S5F1 S5F2 Alarm Report Send
S5F3 S5F4 Enable/Disable Alarm Send
S5F5 S5F6 List Alarm Request
S6F5 S6F6 Multi Block Data Send Inquire
S6F11 S6F12 Event Report Send
S6F15 S6F16 Event Report Request
S6F19 S6F20 Invididual Report Request
S7F1 S7F2 Process Program Inquire
S7F3 S7F4 Process Program Send
S7F5 S7F6 Process Program Request
S7F17 S7F18 Delete Process Program Command
S7F19 S7F20 Current EPPD Request
S7F23 S7F24 Formatted Process Program Send
S7F25 S7F26 Formatted Process Program Request
S7F27 S7F28 Process Program Verification Send
S7F29 S7F30 Process Program Verification Inquire
S9F1 Unrecognized Device ID
S9F3 Unrecognized Stream Type
S9F5 Unrecognized Function Type
S9F7 Illegal Data
S9F9 Transaction Timer Timeout
S9F11 Data Too Long
S9F13 Conversation Timeout
S10F1 S10F2 Terminal Request
S10F3 S10F4 Terminal Display, Single Block
S10F5 S10F6 Terminal Display, Multi Block
S10F7 Multi Block Not Allowed
S14F1 S14F2 Get Attribute Request
S15F1 S15F2 Recipe Management Multi Block Inquire
S15F21 S15F22 Recipe Action Request
S15F27 S15F28 Recipe Download Request
S15F29 S15F30 Recipe Validation Request
S15F31 S15F32 Recipe Unload Request
S15F35 S15F36 Recipe Delete Request

Copyright©2004 Jazz Soft, Inc.

 - 75 -

10.2.1 SlF1 Online Acknowledge Request(R)

Are You There Request
S,H E,Reply

■Description
Confirms whether equipment is online or not. If
Function 0 response occurs, communication cannot be
initiated. After the equipment has sent the host SlF1
Online Acknowledge Request(R), if Function 0 is
received, it has the same meaning as a message
receipt timeout.

■Structure
Header only

s1f1w

10.2.2 SlF2 Online Data (D)

0n Line Data
S,H E

■Description
Declaration that communication is online

■Structure

s1f2
{
 <a MDLN>
 <a SOFTREV>
}

Name Format Description
MDLN a Equipment model. Max 6 bytes.
SOFTREV a Software revision code. Max 6

bytes.

■Exceptions
In the case of the host, a list with length 0 is sent
to the equipment.

s1f2
{
}

10.2.3 SlF3 Selected Equipment Status Request
(SSR)

Selected Equipment Status Request
S,H E,Reply

■Description
Host requests selected status variable from
equipment.

■Structure
The following structure is in accordance with all
item formats. All new implementations should use
this structure.

s1f3w
{
 <u4 SVID1>
 .

 .
 <u4 SVIDn>
}

The structure shown below is for the purpose of
ensuring compatibility with previous
implementation.

s1f3w
<u4 SVID1 ... SVIDn>

Name Format Description
SVID u4 Status variable ID. Status

variables include all parameters
that are sampled over time
increments, such as temperature,
amount of consumables, etc.

■Exceptions
Items with length 0 are requests for all SVID.

s1f3w
{
}

s1f3w
<u4>

10.2.4 S1F4 Selected Equipment Status Data (SSD)

Se1ected Equipment Status Data
M,H E

■Description
Reports each SV value in the order they were
requested by the equipment. The host must remember
which SVID were requested.

■Structure

s1f4
{
 <u4 SV1>
 .
 .
 <u4 SVn>
}

Name Format Description
SV l, b, bool, a,

j, i*, f*, u*
Status variable data

SVID u4 Status variable ID. Status
variables include all
parameters that are sampled
over time increments, such
as temperature, amount of
consumables, etc.

■Exceptions
Lists with length 0 indicate that there is no
response data.

s1f4
{
}

If SVi is an item with length 0, it indicates that
SVIDi does not exist.

Copyright©2004 Jazz Soft, Inc.

 - 76 -

s1f4
{
 <u4>
}

10.2.5 S1F11 Status Variable Namelist Request
(SVNR)

Status Variable Namelist Request
S,H E, Reply

■ Description
Request for status variable confirmation from host
to equipment.

■Structure

s1f11w
{
 <u4 SVID1>
 .
 .
 <u4 SVIDn>
}

Name Format Description
SVID u4 Status variable ID. Status

variables include all parameters
that are sampled over time
increments, such as temperature,
amount of consumables, etc.

■Exceptions
Lists with length 0 are a request for all reports
regarding SVID.

s1f11w
{
}

10.2.6 S1F12 Status Variable Namelist Reply (SVNRR)

Status Variable Namelist Reply
M,H E

■Description
Reports name and units of status variable requested
by equipment.

■Structure

s1f12
{
 {
 <u4 SVID1>
 <a SVNAME1>
 <a UNITS1>
 }
 .
 .
 {
 <u4 SVIDn>
 <a SVNAMEn>
 <a UNITSn>
 }
}

Name Format Description
SVID u4 Status variable ID. Status

variables include all

parameters that are sampled
over time increments, such as
temperature, amount of
consumables, etc.

SVNAME a Status variable name
UNITSn a Recognizes units. Units are

those permitted by Items E5 and
9 (Measurement Units)

■Exceptions
SVNAMEi UNITSi both having character string item
length 0 indicate that the SVID does not exist.

s1f12
{
 {
 <u4 SVID1>
 <a>
 <a>
 }
}

10.2.7 S1F13 Establish Communication Request(CR)

Establish Communication Request
S,H E, Reply

■Description
The objective of this message is to give the formal
meaning of “communication start” in logical
application levels when powering on following
termination of communication or aborting of
communication. This must be the first message sent
following aborting of communication.

Using the confirmation reply code that acknowledges
establishment, attempts to send S1F13 Establish
Communication Request(CR) by the time that S1F14
Establish Communication Request Reply(CRA) is
received during the transaction timeout period
should be repeated over the programmed interval.

■Structure

s1f13w
{
 <a MDLN>
 <a SOFTREV>
}

Name Format Description
MDLN a Equipment model. Max 6 bytes.
SOFTREV a Software revision code. Max 6

bytes.

■Exceptions
Host sends list of length 0 to equipment.

s1f13w
{
}

10.2.8 S1F14 Establish Communication Request
Acknowledge (CRA)

Establish Communication Request Acknowledge
S,H E

■Description
S1F13 Establish Communication (CR) Acknowledge or
denial. MDLN and SOFTREV are online data andonly

Copyright©2004 Jazz Soft, Inc.

 - 77 -

valid when COMMACK=0.

■Structure

s1f14
{
 <b COMMACK>
 {
 <a MDLN>
 <a SOFTREV>
 }
}

Name Format Description
COMMACK b Establish communication

acknowledge code. 1 byte.
0 Acknowleged
1 Denied. Retry
2~63 Reserved

MDLN a Equipment model. Max 6 bytes.
SOFTREV a Software revision code. Max 6

bytes.

■Exceptions
Host sends list of length 0 to equipment.

s1f14
{
 <b COMMACK>
 {
 }
}

10.2.9 S1F15 Request Offline (ROFL)

Request OFF-LINE
S,H E, Reply

■Description
Host requests transition to offline status to
equipment.

■Structure
Header only

s1f15w

10.2.10 S1F16 Offline Request Acknowledge(OFLA)

OFF-LINE Acknowledge
S,H E

■Description
OK or NG reply to S1F15 Request Offline (ROFL)

■Structure

s1f16
<b OFLACK>

Name Format Description
OFLACK b Acknowledgement code versus

offline request
0 Offine acknowledged
1~63 Reserved

10.2.11 S1F17 Request Online (RONL)

Request ON-LINE
S,H E, 返信

■Description
Host requests transition to online status to
equipment.

■Structure
Header only

s1f17w

10.2.12 S1F18 Online Request Acknowledge(ONLA)

ON-LINE Acknowledge
S,H E

■Description
OK or NG reply to S1F17 Request Online(RONL)

■Structure

s1f18
<b ONLACK>

Name Format Description
ONLACK b Acknowledgement code versus

online request
0 Online acknowledged
1 Online not granted
2 Equipment already online
3~63 Reserved

10.2.13 S2F13 Equipment Constant Request(ECR)

Equipment Constant Request
S,H E, Reply

■Description
Query constants that almost never change with this
message, such as offsets, servo gain, alarm limit
values, data collection modes, etc.

■Structure
The structure below is in accordance with all item
formats. Any new implementations should use this
structure.

s2f13w
{
 <u4 ECID1>
 .
 .
 <u4 ECIDn>
}

The structure shown below is for the purpose of
ensuring compatibility with previous
implementations.

s2f13w
<u4 ECID1 ... ECIDn>

Name Format Description
ECID u4 Equipment

Copyright©2004 Jazz Soft, Inc.

 - 78 -

Constant ID.

■Exceptions
Lists (Structure 1) or Items with length 0 (Structure
2) request all constants in the order they were
predefined.

s2f13w
{
}

s2f13w
<u4>

10.2.14 S2F14 Equipment Constant Data (ECD)

Equipment Constant Data
M,H E

■Description
Reply constants S2F13 Equpment Constant
Request(ECR) come in the order they were requested.

■Structure

s2f14
{
 <ECV1>
 .
 .
 <ECVn>
}

Name Format Description
ECV b, bool, a, j, i*, f*, u* Equipment

constant

■Exceptions
If ECVi is a list with length 0, it indicates that
the target ECIDi is not present. The list format
of this data item is prohibited except in this case.

s2f14
{
 {
 }
}

10.2.15 S2F15 New Equipment Constant Send 定数変更
(ECS)

New Equipment Constant Send
S,H E,Reply

■Description
Changes one or multiple equipment constants

■Structure

s2f15w
{
 {
 <u4 ECID1>
 <ECV1>
 }
 .
 .
 {

 <u4 ECIDn>
 <ECVn>
 }
}

Name Format Description
ECID u4 Equipment

constant ID
ECV b, bool, a, j, i*, f*, u* Equipment

constant

10.2.16 S2F16 New Equipment Constant Acknowledge
(ECA)

New Equipment Constant Acknowledge
S,H E

■Description
OK or NG reply to S2F15 New Equipment Constant
Send(ECS). If EAC is an error code other than 0, no
value in the ECID selected by the equipment in S2F15
should be changed.

■Structure

s2f16
<b EAC>

Name Format Description
EAC b Equipment acknowledgement code. 1

byte.
0 Acknowledged
1 Denied. 1 or more

constants do not exist
2 Denied. Busy
3 Denied. 1 or more constants

are out of range.
>3 Other equipment-specific

error
4~63 Reserved

10.2.17 S2F17 Date and Time Request(DTR)

Date and Time Request
S,H E, Reply

■Description
Used to synchronize equipment time base checks and
host time base.

■Structure
Header only

s2f17w

10.2.18 S2F18 Date and Time Data (DTD)

Date and Time Data
S,H E

■Description
Current time

■Structure

s2f18
<a TIME>

Copyright©2004 Jazz Soft, Inc.

 - 79 -

Name Format Description
TIME a Time. 12 or 16 bytes.

If 12 bytes, format is:
YYMMDDhhmmss
If 16 bytes, format is:
YYYYMMDDhhmmsscc

■Exceptions
Items with length 0 indicate that it does not have
a clock.

s2f18
<a>

10.2.19 S2F29 Equipment Constant Namelist Request
(ECNR)

Equipment Constant Namelist Request
S,H E, Reply

■Description
Host collects basic information regarding valid
equipment constants inside the equipment.

■Structure

s2f29w
{
 <u4 ECID1>
 .
 .
 <u4 ECIDn>
}

Name Format Description
ECID u4 Equipment constant ID

■Exceptions
If length is 0, sending of all ECID information is
indicated.

10.2.20 S2F30 Equipment Constant Namelist(ECN)

Equipment Constant Namelist
M,H E

■Description
Reply to S2F29 Equipment Constant Namelist Request
(ECNR)

■Structure

s2f30
{
 {
 <u4 ECID1>
 <a ECNAME1>
 <ECMIN1>
 <ECMAX1>
 <ECDEF1>
 <a UNITS1>
 }
 .
 .
 {
 <u4 ECIDn>
 <a ECNAMEn>
 <ECMIINn>
 <ECMAXn>
 <ECDEFn>
 <a UNITSn>

 }
}

Name Format Description
ECID u4 Equipment constant ID
ECNAME a Equip. constant name
ECMIN b, bool, a, j,

i*, f*, u*
Minimum equipment
constant value

ECMAX b, bool, a, j,
i*, f*, u*

Maximum equipment
constant value

ECDEF b, bool, a, j,
i*, f*, u*

Equipment constant
default value

UNITS a Recognizes units.
Units are those
permitted in Items E5
and 9 (Meas. Units)

■Exceptions
Character string items with ECNAMEi、ECMINi、ECMAXi、
ECDEFi、and UNITSi length of 0 indicate that the ECID
does not exist.

s2f30
{
 {
 <u4 ECID1>
 <a>
 <a>
 <a>
 <a>
 <a>
 }
}

10.2.21 S2F31 Date and Time Set Request(DTS)

Date and Time Set Request
S,H E, Reply

■Description
Used to synchronize equipment time to host computer
time base.

■Structure

s2f31w
<a TIME>

Name Format Description
TIME a Time. 12 or 16 bytes.

If 12-byte, the format is:
YYMMDDhhmmss
If 16-byte, the format is:
YYYMMDDhhmmsscc

10.2.22 S2F32 Date and Time Set Acknowledge (DTA)

Date and Time Set Acknowledge
S,H E

■Description
Acknowledges date and time setting

■Structure

s2f32
<b TIACK>

Name Format Description
TIACK b Time acknowledgement code. 1

Copyright©2004 Jazz Soft, Inc.

 - 80 -

byte.
0 OK。
1 Error. Not acknowledged
2~63 Reserved

10.2.23 S2F33 Define Report (DR)

Define Report
M,H E, Reply

■Description
The objective of this message is to specify the
series of reports to the equipment from the host
computer. The type of report sent is specified to
in Boolean format, in accordance with equipment
constants. False equipment constants indicate that
S6F11 Event Report Send(ERS) will be sent, and True
equipment constants indicate that S6F13 Annotated
Event Report Send(AERS) will be sent.10. If S2F33 is
multi block, S2F39 Multi Block Inquire (DMBI) and
S2F40 Multi Block Grant(MBG) transactions must
precede.

■Structure

s2f33w
{
 <u4 DATAID>
 {
 {
 <u4 RPTID1>
 {
 <u4 VID1>
 .
 .
 <u4 VIDb>
 }
 }
 {
 <u4 RPTIDa>
 {
 <u4 VID1>
 .
 .
 <u4 VIDc>
 }
 }
 }
}

Name Format Description
DATAID u4 Data ID
RPTID u4 Report ID
VID u4 Variable ID

■Exceptions
Lists of length 0 which follow DATAID clear all
report regulations and related links. Please refer
to S2F35 Link Event Report(LER).

s2f33w
{
 <u4 DATAID>
 {
 }
}
Lists of length 0 which follow RPTID clear report
type RPTID. All CEID links to this RPTID will also
be deleted.
s2f33w
{
 <u4 DATAID>
 {
 {
 <u4 RPTID>

10In GEM, S6F13 is not used.

 {
 }
 }
 }
}

Name Format Description
CEID u4 Collection event ID

10.2.24 S2F34 Define Report Acknowledge (DRA)

Define Report Acknowledge
S,H E

■Description
Acknowledgement or error. When an error status is
detected, all messages are denied. In other words,
partial changes are not allowed.

■Structure

s2f34
<b DRACK>

Name Format Description
DRACK b Define report acknowledgement

code. 1 byte.
0 Acknowledged
1 Denied. Insufficient space
2 Denied. Invalid format
3 Denied. 1 or more RPTID is

already defined.
4 Denied. 1 or more VID does

not exist.
>4 Other error
5~63 Reserved

RPTID u4 Report ID
VID u4 Variable ID

10.2.25 S2F35 Link Event Report(LER)

Link Event Report
M,H E, Reply

■Description
The objective of this message is to link the host
computer to event ID (CEID) which communicate
reports . These linked event reports are disabled
and not executed even when linked. In other words,
even if an event occurs, reports will not be sent
unless they are set to enabled status.

If S2F35 is a multi block, S2F39 Multi Block
Inquire(DMBI) and S2F40 Multi Block Grant (MBG)ト
transactions must precede.

■Structure

s2f35w
{
 <u4 DATAID>
 {
 {
 <u4 CEID1>
 {
 <u4 RPTID1>
 .
 .
 <u4 RPTIDb>
 }
 }
 .
 .
 {

Copyright©2004 Jazz Soft, Inc.

 - 81 -

 <u4 CEIDa>
 {
 <u4 RPTID1>
 .
 .
 <u4 RPTIDc>
 }
 }
 }
}

Name Format Description
DATAID u4 Data ID
CEID u4 Collection event ID
RPTID u4 Report ID

■Exceptions
Lists of length 0 which follow CEID clear all reports
linked to that event.

s2f35w
{
 <u4 DATAID>
 {
 {
 <u4 CEID>
 {
 }
 }
 }
}

10.2.26 S2F36 Link Event Report Acknowledge (LERA)

Link Event Report Acknowledge
S,H E

■Description
Acknowledgement or error. If an error status is
detected, all messages will be denied. In other words,
partial changes are not allowed.

■Structure

s2f36
<b LRACK>

Name Format Description
LRACK b Link report acknowledgement

code. 1 byte.
0 Acknowledged
1 Denied. Insufficient space
2 Denied. Invalid format
3 Denied. 1 or more CEID

links are already defined.
4 Denied. 1 or more CEID does

not exist.
5 Denied. 1 or more RPTID

does not exist.
>5 Other error
6~63 Reserved

CEID u4 Collection event ID.
RPTID u4 Report ID.

10.2.27 S2F37 Enable/Disable Event Report(EDER)

Enable/Disable Event Report
S,H E, Reply

■Description
The objective of this message is for the host
computer to enable or diable the series of reports

with respect to communication event IDs（CEIDs）.

■Structure

s2f37w
{
 <bool CEED>
 {
 <u4 CEID1>
 .
 .
 <u4 CEIDn>
 }
}

Name Format Description
CEED bool Collection event or trace

enable/disable code. 1 byte.
False Disable
True Enable

CEID u4 Collection event ID

■Exceptions
Lists of length 0 following CEED indicate all CEIDs.

s2f37w
{
 <bool CEED>
 {
 }
}

10.2.28 S2F38 Enable/Disable Event Rport
Acknowledge (EERA)

Enable/Disable Event Report Acknowledge
S,H E

■Description
Acknowledgement or error. If an error status is
detected, all messages will be denied. In other words,
partial changes are not allowed.

■Structure

s2f38
<b ERACK>

Name Format Description
ERACK b Enable/Disable event report

acknowledgement code. 1 byte.
0 Acknowledged
1 Denied. 1 or more CEID

does not exist.
>1 Other error
2~63 Reserved

CEID u4 Collection event ID

10.2.29 S2F39 Multi Block Inquire (DMBI)

Multi-block Inquire
S,H E, Reply

■Description
If S2F23 Trace Condition Set(TIS),S2F33 Define
Report(DR), S2F35 Link Event Report(LER), S2F45
Define Variable Limit Attribute (DVLA) or S2F49
Enhanced Remote Command messages were more than 1
block, this transaction must always come before the
message.

Copyright©2004 Jazz Soft, Inc.

 - 82 -

■Structure

s2f39w
{
 <u4 DATAID>
 <u4 DATALENGTH>
}

Name Format Description
DATAID u4 Data ID
DATALENGTH u4 Total no. of bytes of

send data

10.2.30 S2F40 Multi Block Grant (MBG)

Multi-block Grant
S,H E

■Description
Grants sending of multi-block messages

■Structure

s2f40
<b GRANT>

Name Format Description
GRANT b Grant code. 1 byte.

0 Granted
1 Busy. Retry
2 Insufficient receive space
3 Duplicate DATAID
>3 Equip-specific error code
4~63 Reserved

DATAID u4 Data ID

10.2.31 S2F41 Host Command Send (HCS)

Host Command Send
S,H E, Reply

■Description
Host requests execution of a specific remote command
having parameters related to the equipment.

■Structure

s2f41w
{
 <a RCMD>
 {
 {
 <a CPNAME1>
 <CPVAL1>
 }
 .
 .
 {
 <a CPNAMEn>
 <CPVALn>
 }
 }
}

Name Format Description
RCMD a Remote control command

code or command string
CPNAME a Command parameter name
CPVAL b, bool, a,

j, i*, u*
Command parameter value

10.2.32 S2F42 Host Command Acknowledge (HCA)

Host Command Acknowledge
S,H E

■Description
Host command or error acknowledgement. If a command
is not accepted due to 1 or more invalid parameters,
an invalid parameter list including the parameter
names and reason for invalidity will be returned.

■Structure

s2f42
{
 <b HCACK>
 {
 {
 <a CPNAME1>
 <b CPACK1>
 }
 .
 .
 {
 <a CPNAMEn>
 <b CPNAMEn>
 }
 }
}

Name Format Description
HCACK b Host command parameter

acknowledgement code. 1 byte.
0 Acknowledged. Command

executed.
1 Command does not exist
2 Cannot currently execute
3 1 or more parameters are

invalid
4 Acknowledged. Command

will be executed and
completion announced by
event.

5 Denied. Already in
requested status.

6 Object does not exist.
7~63 Reserved

CPNAME a Command parameter name
CPACK b Command parameter

acknowledgement code. 1 byte.
1 Parameter name（CPNAME）

does not exist.
2 Illegal value specified

for CPVAL use.
3 Illegal format specified

for CPVAL use.
>3 Other equipment-

specific error
4~63 Reserved

■Exceptions
If there is no invalid parameter, a list of length
0 will be sent.

s2f42
{
 <b HCACK>
 {
 }
}

10.2.33 S2F49 Enhanced Remote Command

Enhanced Remote Command
M,H E

Copyright©2004 Jazz Soft, Inc.

 - 83 -

■Description
Host makes request to object which attaches
parameters related to the specified remote command.
If multi block, S2F39 Multi Block Inquire (DMBI) and
S2F40 Multi Block Grant (MBG) transactions must
precede.

■Structure

s2f49w
{
 <u4 DATAID>
 <a OBJSPEC>
 <a RCMD>
 {
 {
 <a CPNAME1>
 <CEPVAL1>
 }
 {
 <a CPNAME2>
 <CEPVAL2>
 }
 .
 .
 {
 <a CPNAMEm>
 <CEPVALm>
 }
 }
}

If a particular value of CPNAME has a list and defined
CEPVAL, it will always be list. If the CEPVAL related
to the CPNAME of that specific value is defined as
other than list, the result will be a format error.

Name Format Description
DATAID u4 Data ID
OBJSPEC a Text string used to indicate

a specific object instance
having an internal format.
This string is composed of
a series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string
format is composed of the
following 4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used
at the end of the
classifier. Object type is
also determined by other
methods so it may be
omitted. The final “>” is
optional.

RCMD a Remote control command or
command string.

CPNAME a Command parameter name
CEPVAL l, b,

bool, a,
j, i*,
f*, u*

Command extended parameter
value. Since CPNAME value
is used, if CEPVAL has a
specific method of use, it
will always be known.
CEPVAL has the following
format：
Single (not list) value（Ex：
CPVAL）, same format and type
single item list, or list of
format items.

<L
<CPNAME>
<CEPVAL>
>

CPVAL b,bool,a
,j,i*,u*

Command parameter value

■Exceptions
Lists of length 0 indicate that parameters were not
sent together with commands.

s2f49w
{
 <u4 DATAID>
 <a OBJSPEC>
 <a RCMD>
 {
 }
}

OBJSPEC may also be items with length 0.

s2f49w
{
 <u4 DATAID>
 <a>
 <a RCMD>
 {
 }
}

■Notes
If CEPVAL is a list, the items in that list will be
in one of the following formats.

 List of items with identical formats
 List of combinations of CPNAME and CEPVAL

as shown below.

s2f49w
{
 <u4 DATAID>
 <a OBJSPEC>
 <a RCMD>
 {
 {
 <a CEPNAMEa>
 {
 <CEPVALa1>
 <CEPVALa2>
 .
 .
 <CEPVALam>
 }
 }
 }
}

s2f49w
{
 <u4 DATAID>
 <a OBJSPEC>
 <a RCMD>
 {
 {
 <a CPNAMEb>
 {
 {
 <a CPNAMEb1>
 <CEPVALb1>
 }
 .
 .
 {
 <a CPNAMEbn>

Copyright©2004 Jazz Soft, Inc.

 - 84 -

 <CEPVALbn>
 }
 }
 }
 }
}

10.2.34 S2F50 Enhanced Remote Command Acknowledge

Enhanced Remote Command Acknowledge
M,H E

■Description
This is used for the equipment to acknowledge an
enhanced remote command, or report an error. If the
command is not accepted due to 1 or more invalid
parameters, a list of the invalid parameters showing
parameter names and reason for invalidity is
returned to (HCACK=3）.

■Structure

s2f50
{
 <b HCACK>
 {
 {
 <a CPNAME1>
 <u1 CEPACK1>
 }
 .
 .
 {
 <a CPNAMEn>
 <u1 CEPACKn>
 }
 }
}

Name Format Description
HCACK b Host command parameter

acknowledgement code. 1 byte
0 Acknowledged. Command

executed.
1 Command does not exist
2 Cannot execute now
3 1 or more parameters

invalid
4 Acknowledged. Command

will be executed and
completion announced
by event.

5 Denied. Already in
requested status

6 Object does not exist
7~63 Reserved

CPNAME a Command parameter name。
CEPACK l,u1 Command enhanced parameter

acknowledgement.If a
particular value in CPNAME is
defined as having a list
CEPVAL, CEPACK will be in the
same format as the
corresponding CEPVAL list
format so as to be used by
S2F49 11 (enhanced remote
command). Except for this
case, CEPACK will be a 1-byte
integer.
0 No error
1 Parameter name（CPNAME）

does not exist
2 Illegal value

specified in CEPVAL
3 Illegal format

11?

specified in CEPVAL.
4 Parameter name（CPNAME）

usage method is invalid
5~63 Reserved

CEPVAL l, b,
bool, a,
j, i*,
f*, u*

Command enhanced parameter
value. Since the CPNAME
value is used, if CEPVAL has
a specific method of use, it
will always be known. CEPVAL
has the following format：
Single (not list) value（Ex：
CPVAL）, same format and type
single item list, or list of
format items.

<L
<CPNAME>
<CEPVAL>
>

CPVAL b, bool,
a, j, i*,
u*

Command parameter value

10.2.35 S5F1 Alarm Report Send (ARS)

Alarm Report Send
S,H E, Reply

■Description
This message is used to announce alarm status
occurrence or clearing. When an alarm is set or
cleared, this message is sent. It is OK if there are
no corresponding clear messages for unrecoverable
errors or waring flags.

■Structure

s5f1w
{
 <b ALCD>
 <u4 ALID>
 <a ALTX>
}

Name Format Description
ALCD b Alarm code

bit8 1=Alarm status occurred
 0=Alarm status cleared
bit7~1 Alarm classify code
0 Not used
1 Human safety-related
2 Tool safety-related
3 Parameter control alarm
4 Parameter control error
5 Unrecoverable error
6 Equipment status warning
7 Warning flag
8 Data cannot be guaranteed
>8 Other category
9~63 Reserved

ALID u4 Alarm ID
ALTX a Alarm text. Max 40 characters.

10.2.36 S5F2 Alarm Report Acknowledge (ARA)

Alarm Report Acknowledge
S,H E

■Description
OK or NG reply to S5F1 Alarm Report Send (ARS)

■Structure

s5f2

Copyright©2004 Jazz Soft, Inc.

 - 85 -

<b ACKC5>

Name Format Description
ACKC5 b Acknowledge code. 1 byte.

0 Acknowledged
>0 Error. Can’t acknowledge
1~63 Reserved

10.2.37 S5F3 Enable/Disable Alarm Send(EAS)

Enable/Disable Alarm Send
S,H E, Reply

■Description
Perfoms setting/resetting of enable bit of
equipment alarm announcement. In the equipment,
whether or not to send an alarm notification to the
host is determined by this bit. Some alarms cannot
be controlled by this method.

■Structure

s5f3w
{
 <b ALED>
 <u4 ALID>
}

Name Format Description
ALED b Alarm enable/disable code. 1

byte.
bit8 1=Alarm enable
bit8 0=Alarm disable

ALID u4 Alarm ID

■Exceptions
Items with ALID length of 0 indicate
setting/resetting of all alarms.

s5f3w
{
 <b ALED>
 <u4>
}

10.2.38 S5F4 Enable/Disable Alarm Acknowledge (EAA)

Enable/Disable Alarm Acknowledge
S,H E

■Description
OK or NG reply to S5F3 Enable/Disable Alarm Send(EAS)

■Structure

s5f4
<b ACKC5>

Name Format Description
ACKC5 b Acknowledge code. 2 byte.

0 Acknowledged
>0 Error. Can’t acknowledge
1~63 Reserved

10.2.39 S5F5 List Alarm Request (LAR)

List Alarm Request
S,H E, Reply

■Description
Host makes a request to the equipment to send an alarm
information list.

■Structure

s5f5w
<u4 ALID1 ... ALIDn>

Name Format Description
ALID u4 Alarm ID

■Exceptions
Items with length 0 request all alarms.

10.2.40 S5F6 List Alarm Data (LAD)

List Alarm Data
M,H E

■Description
Equipment current alarm status (alarm
occurrence/clearing); can be multiple alarm data.

■Structure

s5f6
{
 {
 <b ALCD1>
 <u4 ALID1>
 <a ALTX1>
 }
 .
 .
 {
 <b ALCDm>
 <u4 ALIDm>
 <a ALTXm>
 }
}

Name Format Description
ALCD b Alarm code

bit8 1=Alarm status occurred
bit8 0=Alarm status cleared
bit7~1 Alarm classification code
0 Not used
1 Human safety-related
2 Tool safety-related
3 Parameter control alarm
4 Parameter control error
5 Unrecoverable error
6 Equipment status warning
7 Warning flag
8 Data cannot be guaranteed
>8 Other category
9~63 Warning

ALID u4 Alarm ID
ALTX a Alarm text. Max 40 characters

■Exceptions
Lists with length m of 0 have no alarm data. Items
with ALCDi or ALTXi length of 0 indicate that the
corresponding alarm has no data.

10.2.41 S6F5 Multi Block Data Send Inquire (MBI)

Multi-block Data Send Inquire
S,H E, Reply

Copyright©2004 Jazz Soft, Inc.

 - 86 -

■Description
If Discrete Data Report, S6F3 Discrete Variable Send
(DVS), S6F9 Formatted Variable Send(FVS)、S6F11
Event Report Send(ERS), or S6F13 Annotated Event
Report Send (AERS) require multiple blocks, this
process must be performed prior to sending.

■Structure

s6f5W
{
 <? DATAID>
 <? DATALENGTH>
}

Name Format Description
DATAID u4 Data ID
DATALENGTH u4 Total No. of Bytes of

send data

10.2.42 S6F6 Multi Block Grant (MBG)

Multi-block Grant
S,H E

■Description
OK or NG reply to S6F5 Multi Block Data Send Inquire
(MBI).

■Structure

s6f6
<b GRANT6>

Name Format Description
GRANT6 b Send granting. 1 byte.

0 Send granted
1 Busy. Retry request
2 Unnecessary
>2 Other error
3~63 Reserved

10.2.43 S6F11 Event Report Send (ERS)

Event Report Send
M,H E, Reply

■Description
The objective of this message is for the equipment
to send defined valid report groups to the host
computer when an event occurs.（CEID）

If S6F11 is multi block, S6F5 Multi Block Data Send
Inquire (MBI) and S6F6 Multi Block Grant
(MBG)transactions must precede this.12

■Structure

s6f11w
{
 <u4 DATAID>
 <u4 CEID>
 {
 {
 <u4 RPTID1>
 {
 <V1>
 .
 .
 <Vp>

12 However, since in HSMS there is no multi block message, s6f5 will not
occur with this product.

 }
 }
 .
 .
 {
 <u4 RPTIDa>
 {
 <V1>
 .
 .
 <Vc>
 }
 }
 }
}

Name Format Description
DATAID u4 Data ID
CEID u4 Collection

event ID
RPTID u4 Report ID
V l, b, bool, a, j, i*, f*,

u*
Variable data

■Exceptions
If there are no reports linked to an event, it will
be a list of length 0, a=0. Lists of length 0 for
report numbers indicate that there is no report
linked to the given CEID.

10.2.44 S6F12 Event Report Acknowledge(ERA)

Event Report Acknowledge
S,H E

■Description
Acknowledgement or error.

■Structure

s6f12
<b ACKC6>

Name Format Description
ACKC6 b Acknowledge code. 1 byte.

0 Acknowledged
>0 Error. Cannot acknowledge
1~63 Reserved

10.2.45 S6F15 Event Report Request (ERR)

Event Report Request
S,H E, Reply

■Description
This message is for the host computer to request a
given series of reports from the equipment.

■Structure

s6f15w
<u4 CEID>

Name Format Description
CEID u4 Collection event ID.

10.2.46 S6F16 Event Report Data (ERD)

Event Report Data
M,H E, Reply

Copyright©2004 Jazz Soft, Inc.

 - 87 -

■Description
The equipment sends reports linked to the given CEID.

■Structure
Same as the structure of S6F11 Event Report Send(ERS)

s6f16w
{
 <u4 DATAID>
 <u4 CEID>
 {
 {
 <u4 RPTID1>
 {
 <V1>
 .
 .
 <Vp>
 }
 }
 .
 .
 {
 <u4 RPTIDa>
 {
 <V1>
 .
 .
 <Vc>
 }
 }
 }
}

Name Format Description
DATAID u4 Data ID
CEID u4 Collection

event ID
RPTID u4 Report ID
V l, b, bool, a, j, i*,

f*, u*
Variable data

■Exceptions
Items of length 0 indicate that there are no reports
linked to the given CEID.

10.2.47 S6F19 Individual Report Request (IRR)

Individual Report Request
S,H E, Reply

■Description
The objective of this message is for the host to
request defined reports from the equipment.

■Structure

s5f19w
<u4 RPTID>

Name Format Description
RPTID u4 Report ID

10.2.48 S6F20 Individual Report Data (IRD)

Individual Report Data
M,H E

■Description
The equipment sends defined variable data for a given

RPTID to the host.

■Structure

s5f20
{
 <V1>
 .
 .
 <Vn>
}

Name Format Description
V l, b, bool, a, j, i*, f*, u* Variable

data

■Exceptions
Lists of length 0 indicate that RPTID is undefined.

Name Format Description
RPTID u4 Report ID

10.2.49 S7F1 Process Program Load Inquire (PPI)

Process Program Load Inquire
S,H E, Reply

■Description
This message is used to start loading or unloading
of process programs. It is used preceding S7F3
Process Program Send(PPS), S7F4 Process Program
Acknowledge(PPA) or S7F23 Formatted Process
Program Send(EPS),S7F24 Formatted Process Program
Acknowledge(FPA) 、 S7F31 Verification Request
Send(VRS) and S7F32 Verification Request
Acknowledge(VRA).

■Structure

s7f1w
{
 <a PPID>
 <LENGTH>
}

Name Format Description
PPID a Process program ID. Max 80

bytes.
PPID format depends on the
host. When used by the equip.,
PPID is handled as a binary
pattern. If there is no device
to display sent code, it will
be in hexadecimal format.

LENGTH i*, u* Service program or process
program byte length.

10.2.50 S7F2 Process Program Load Grant (PPG)

Process Program Load Grant
S,H E

■Description
This message gives load grants for process programs.

■Structure

s7f2
<b PPGNT>

Name Format Description
PPGNT b Process program grant status. 1

Copyright©2004 Jazz Soft, Inc.

 - 88 -

byte.
0 OK。
1 Already have
2 No space
3 Invalid PPID
4 Busy. Retry request
5 Not granted
>5 Other error
6~63 Reserved

10.2.51 S7F3 Process Program Send (PPS)

Process Program Send
M,H E, Reply

■Description
Process Program sending. If S7F3 is multi block,S7F1
Process Program Load Inquire (PPI) and S7F2 Process
Program Load Grant(PPG) transactions must precede.

■Structure

s7f3w
{
 <a PPID>
 <PPBODY>
}

Name Format Description
PPID a Process program ID. Max 80

bytes. PPID format depends on
the host. When used by the
equip., PPID is handled as a
binary pattern. If there is no
local device to display the send
code, it will be in hexadecimal
format.

PPBODY b, a,
i*, u*

Process program main body.
Statement of operations for
equipment to perform to process
received materials, in
equipment’s own language.

10.2.52 S7F4 Process Program Acknowledge (PPA)

Process Program Acknowledge
S,H E

■Description
OK or NG reply to S7F3 Process Program Send (PPS).

■Structure

s7f4
<b ACKC7>

Name Format Description
ACKC7 b Acknowledgement code. 1 byte.

0 Granted
1 Not granted
2 Length error
3 Array overflow
4 Undefined PPID
5 Mode error
>5 Other error
6~63 Reserved

10.2.53 S7F5 Process Program Request (PPR)

Process Program Request
S,H E, Reply

■Description
Requests sending of process programs.

■Structure

s7f5w
<a PPID>

Name Format Description
PPID a Process program ID. Max 80 bytes .

PPID format depends on host. When
used by the equip., PPID is handled
as a binary pattern. If there is
no local device to display the send
code, it will be in hexadecimal
format.

10.2.54 S7F6 Process Program Data (PPD)

Process Program Data
M,H E

■Description
Sending of process program

■Structure

s7f6
{
 <a PPID>
 <PPBODY>
}

Name Format Description
PPID a Process program ID. Max 80

bytes. PPID format depends on
the host. When used by the
equip., PPID is handled as a
binary pattern. If there is no
local device to display the
send code, it will be in
hexadecimal format.

PPBODY b, a, i*,
u*

Process program main body.
Statement of operations for
equipment to perform to
process received materials,
in equipment’s own language.

■Exceptions
Lists of length 0 indicate that the request was
denied.

■Note
By setting the header R bit to 1, it is possible
to send process programs made on the equipment side
to the host. By doing so, even if equipment programs
for the equipment cannot be created on the host side,
the equipment can be used.

10.2.55 S7F17 Delete Process Program Send (DPS)

Delete Process Program Send
S,H E, Reply

■Description
Host requests equipment process program deletion.

■Structure

s7f17w
{

Copyright©2004 Jazz Soft, Inc.

 - 89 -

 <a PPID1>
 .
 .
 <a PPIDn>
}

Name Format Description
PPID a Process program ID. Max 80 bytes.

PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to display
the send code, it will be in
hexadecimal format.

■Exceptions
Lists of length 0 with n=o will delete all process
programs.

10.2.56 S7F18 Delete Process Program Acknowledge
(DPA)

Delete Process Program Acknowledge
S,H E

■Description
OK or NG reply to S7F17 Delete Process Program
Send(DPS)

■Structure

s7f18
<b ACKC7>

Name Format Description
ACKC7 b Acknowledgement code. 1 byte.

0 Granted
1 Not granted
2 Length error
3 Array overflow
4 PPID Undefined
5 Mode error
>5 Other error
6~63 Reserved

PPID b, a Process program ID. Max 80 bytes.
PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to
display the send code, it will be
in hexadecimal format.

10.2.57 S7F19 Current EPPD Request (RER)

Current EPPD Request
S,H E, Reply

■Description
This message is used to request the current equipment
process program directory (EPPD). This is a list
of all PPID of process programs in the equipment’s
memory.

■Structure
Header only

s7f19w

Name Format Description
PPID a Process program ID. Max 80 bytes.

PPID format depends on the host.

When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to display
the send code, it will be in
hexadecimal format.

10.2.58 S7F20 Current EPPD Data (RED)

Current EPPD Data
M,H E

■Description
This message is used to communicate the current EPPD.

■Structure

s7f20
{
 <a PPID1>
 .
 .
 <a PPIDn>
}

Name Format Description
PPID a Process program ID. Max 80 bytes.

PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to display
the send code, it will be in
hexadecimal format.

10.2.59 S7F23 Formatted Process Program Send (EPS)

Formatted Process Program Send
M,H E, Reply

■Description
This message is used to communicate formatted
process programs between the equipment and
host.MDLN and SOFTREV values are obtained from S7F22
Equipment Process Capacity Data (PCD) used in
creating the process program. If S7F23 is multi block,
S7F1 Process Program Load Inquire(PPI) and S7F2
Process Program Load Grant (PPG) transactions must
precede this.

■Structure

s7f23w
{
 <a PPID>
 <a MDLN>
 <a SOFTREV>
 {
 {
 <CCODE>
 {
 <PPARM1>
 .
 .
 <PPARMp>
 }
 }
 <CCODEc>
 {
 <PPARM1>
 .
 .
 <PPARMq>
 }
 }
 }
}

Copyright©2004 Jazz Soft, Inc.

 - 90 -

Name Format Description
PPID a Process program ID. Max 80

bytes. PPID format depends
on the host. When used by the
equip.., PPID is handled as
a binary pattern. If there
is no local device to
display the send code, it
will be in hexadecimal
format.

MDLN a Equipment model. Max 6 bytes
SOFTREV a Software revision code.

Max6 bytes.
CCODE i2, u2 Command code. Each command

code corresponds to an
individual process
operation which the device
can perform.

PPARM bool, a,
i*, f*,
u*

Process parameter.
Parameter which gives
information needed to
complete process
command.May be numerical or
True/False SECS data item.
May be single or multiple
value or character string.

10.2.60 S7F24 Formatted Process Program Acknowledge
(FPA)

Formatted Process Program Acknowledge
S,H E

■Description
Reply for receipt of formatted process program and
receipt of process program via inter-printer.
“Acknowledged” reply from inter-printer only means
that message was understood. Validity of process
program contents is communicated via different
transactions: S7F27 Process Program Verification
Send (PVS) and S7F28 Process Program Verification
Acknowledge(PVA).

■Structure

s7f24
<b ACKC7>

Name Format Description
ACKC7 b Acknowledgement code. 1 byte

0 Granted
1 Not granted
2 Length error
3 Array overflow
4 PPID undefined
5 Mode error
>5 Other error
6~63 Reserved

PPID a Process program ID. Max 80 bytes.
PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to
display the send code, it will be
in hexadecimal format.

10.2.61 S7F25 Formattted Process Program Request
(FPR)

Formatted Process Program Request
S,H E, Reply

■Description

This message is used for the host or equipment to
request sending of process programs.

■Structure

s7f25w
<a PPID>

Name Format Description
PPID a Process program ID. Max 80 bytes.

PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to display
the send code, it will be in
hexadecimal format.

10.2.62 S7F26 Formatted Process Program Data (FPD)

Formatted Process Program Data
M,H E

■Description
This message is used to send process programs as
replies to PPID requests. MDLN and SOFTREV values
are obtained from S7F22 Equipment Process Capacity
Data(PCD) used in creating the process program.

■Structure

s7f26
{
 <a PPID>
 <a MDLN>
 <a SOFTREV>
 {
 {
 <CCODE>
 {
 <PPARM1>
 .
 .
 <PPARMp>
 }
 }
 <CCODEc>
 {
 <PPARM1>
 .
 .
 <PPARMq>
 }
 }
 }
}

Name Format Description
PPID a Process program ID. Max

80 bytes. PPID format
depends on the host. When
used by the equip.., PPID
is handled as a binary
pattern. If there is no
local device to display
the send code, it will be
in hexadecimal format.

MDLN a Equip. model. Max 6 bytes
SOFTREV a Software revision code.

Max 6 bytes.
CCODE i2, u2 Command code. Each

command code corresponds
to an individual process
operation which the
device can perform.

PPARM bool, a, i*,
f*, u*

Process parameter.
Parameter which gives
information needed to

Copyright©2004 Jazz Soft, Inc.

 - 91 -

complete process
command.May be numerical
or True/False SECS data
item. May be single or
multiple value or
character string.

■Exceptions
Lists of length 0, where c=0, indicate that the
request was denied.

10.2.63 S7F27 Process Program Verification Send
(PVS)

Process Program Verification Send
M,H E, Reply

■Description
This message notifies the host that the equipment
has received and checked the process program. The
check results are specified via the error list.
There may be an empty list (list of length 0 where
n=0） or a 0 value. Single element lists having
ACKC7A indicate that no error was found during
processing. The equipment can report as many
errors as it deems suitable. No matter what the
format, when the equipment has received process
programs of any format, S7F23 Formatted Process
Program Send(EPS) or S7F26 Formatted Program Data
(FPD)or S7F31 Verification Request Send(VRS), it
has the duty to send a copy of this message to the
host. If S7F27 is multi block, the S7F29 Process
Program Verification Inquire(PVI)） and S7F30
Process Program Verification Grant(PVG)
transactions must precede it.

■Structure

s7f27w
{
 <a PPID>
 {
 {
 <ACKC7A>
 <SEQNUM>
 <a ERRW7>
 }
 .
 .
 {
 <ACKC7An>
 <SEQNUMn>
 <a ERRW7n>
 }
 }
}

Name Format Description
PPID b, a Process program ID. Max 80

bytes. PPID format depends
on the host. When used by the
equip.., PPID is handled as
a binary pattern. If there is
no local device to display
the send code, it will be in
hexadecimal format.

ACKC7A i1, u1 Acknowledge code. 1 byte
0 Acknowledged
1 MDLN inconsistent
2 SOFTREV

inconsistent
3 Invalid CCODE
4 Invalid PPARM val.
5 Other error (shown

via ERRW7)
6~63 Reserved

SEQNUM i*, u* Command number indicating by
number the position of

the command in the
process command list. In
the first command in the
process program, SEQNUM
is 1.

ERRW7 a Character string showing
errors found in the process
program.

MDLN a Equip. model. Max 6 bytes
SOFTREV a Software revision number.

Max 6 bytes
CCODE i2, u2 Command code. Each command

code corresponds to an
individual process
operation which the device
can perform.

PPARM bool, a,
i*, f*, u*

Process parameter.
Parameter which gives
information needed to
complete process
command.May be numerical or
True/False SECS data item.
May be single or multiple
value or character string.

10.2.64 S7F28 Process Program Verification
Acknowledge (PVA)

Process Program Verification Acknowledge
S,H E

■Description
Reply from host acknowledging receipt of S7F27
Process Program Verification Send(PVS) from
equipment.

■Structure
Header only

s7f28

10.2.65 S7F29 Process Program Verification Inquire
(PVI)

Process Program Verification Inquire
S,H E, Reply

■Description
This message is used by the equipment to ask the host
for permission to send multi block S7F27 Process
Program Verification Send(PVS).

■Structure

s7f29w
<LENGTH>

Name Format Description
LENGTH i*, u* Service program and process

program byte length.

10.2.66 S7F30 Process Program Verification Grant
(PVG)

Process Program Verification Grant
S,H E

■Description
Reply from host to equipment regarding S7F29 Program

Copyright©2004 Jazz Soft, Inc.

 - 92 -

Process Verification Inquire(PVI).

■Structure

s7f30
<b PPGNT>

Name Format Description
PPGNT b Process program grant status. 1

byte.
0 OK
1 Already have
2 No space
3 Invalid PPID。
4 Busy. Retry request
5 Not granted
>5 Other error
6~63 Reserved

PPID b, a Process program ID. Max 80 bytes.
PPID format depends on the host.
When used by the equip.., PPID is
handled as a binary pattern. If
there is no local device to
display the send code, it will be
in hexadecimal format.

10.2.67 S9F1 Unrecognized Device ID (UDN)

Unrecognized Device ID
S,H E

■Description
The device ID in the message block header is
undefined for that node.

■Structure

s9f1
<b MHEAD>

Name Format Description
MHEAD b Message header that errored

10.2.68 S9F3 Unrecognized Stream Type (USN)

Unrecognized Stream Type
S,H E

■Description
The stream type in the message block header is
undefined for that equipment.

■Structure

s9f3
<b MHEAD>

Name Format Description
MHEAD b Message header that errored

10.2.69 S9F5 Unrecognized Function Type (UFN)

Unrecognized Function Type
S,H E

■Description
The function type in the message ID is undefined for
that equipment.

■Structure

s9f5
<b MHEAD>

Name Format Description
MHEAD b Message header that errored

10.2.70 S9F7 Illegal Data (IDN)

Illegal Data
S,H E

■Description
The stream and function were understood but the data
format could not be interpreted.

■Structure

s9f7
<b MHEAD>

Name Format Description
MHEAD b Message header that errored

10.2.71 S9F9 Transaction Timer Timeout (TIN)

Transaction Timer Timeout
S,H E

■Description
Indicates that Transaction (T3） timer has timed out
and that the transaction in progress was forced to
terminate. The host determines what response to this
error is necessary in order to maintain proper
operational status of the system.

■Structure

s9f9
<b SHEAD>

Name Format Description
SHEAD b Header of message relating to

transaction time.

10.2.72 S9F11 Data Too Long (DLN)

Data Too Long
S,H E

■Description
Indicates that data of length too long to process
was sent to equipment.

■Structure

s9f11
<b MHEAD>

Name Format Description
MHEAD b Message header that errored.

10.2.73 S9F13 Conversation Timeout (CTN)

Conversation Timeout

Copyright©2004 Jazz Soft, Inc.

 - 93 -

S,H E

■Description
Data was expected to be received but was not within
the appropriate timeframe. Resources are cleared.

■Structure

s9f13
{
 <a MEXP>
 <EDID>
}

Name Format Description
MEXP a SxxFyy to be received.
EDID b, a, i*,

u*
Data ID to be received. One of
the following 3 is possible:
MEXP EDID EDID
S2F3 <SPID> a[6]
S3F13 <PTN> b[1]
S7F3 <PPID> a[16], b[16]

10.2.74 S10F1 Terminal Request (TRN)

Terminal Request
S,H E, Reply

■Description
Text message from terminal to host.

■Structure

s10f1w
{
 <b TID>
 <a TEXT>
}

Name Format Description
TID b Terminal no. 1 byte.

0 Single or main
terminal

>0 Added terminal on
same equipment

TEXT a, a2 One-line character

10.2.75 S10F2 Terminal Request Acknowledge (TRA)

Terminal Request Acknowledge
S,H E

■Description
OK or NG reply to S10F1 Terminal Request(TRN)

■Structure

s10f2
<b ACKC10>

Name Format Description
ACKC10 b Acknowledgement code. 1 byte.

0 Display acknowledged
1 Message not displayed
2 Cannot use terminal
3~63 Reserved

10.2.76 S10F3 Terminal Display, Single Block (VTN)

Terminal Display,Single
S,H E, Reply

■Description
Data to be displayed

■Structure

s10f3w
{
 <b TID>
 <a TEXT>
}

Name Format Description
TID b Terminal no. 1 byte.

0 Single or main terminal
>0 Added terminal on same

equipment
TEXT a, a2* One-line character

10.2.77 S10F4 Terminal Display, Single Block
Acknowledge (VTA)

Terminal Display,Single Acknowledge
S,H E

■Description
OK or NG reply to S10F3 Terminal Display, Single
Block (VTN)

■Structure

s10f4
<b ACKC10>

Name Format Description
ACKC10 b Acknowledgement code. 1 byte.

0 Display acknowledged
1 Message not displayed
2 Cannot use terminal
3~63 Reserved

10.2.78 S10F5 Terminal Display, Multi Block (VTN)

Terminal Display,Multi-block
M,H E, Reply

■Description
Data to be displayed

■Structure

s10f5w
{
 <b TID>
 {
 <a TEXT1>
 .
 .
 <a TEXTn>
 }
}

Name Format Description
TID b Terminal no. 1 byte.

0 Single or main terminal
>0 Added terminal on same

equipment
TEXT a, a2 One-line character

Copyright©2004 Jazz Soft, Inc.

 - 94 -

10.2.79 S10F6 Terminal Display, Multi Block

Acknowledge (VMA)

Terminal Display,Multi-block Acknowledge
S,H E

■Description
OK or NG reply to S10F5 Terminal Display, Multi Block
(VTN)

■Structure

s10f6
<b ACKC10>

Name Format Description
ACKC10 b Acknowledgement code. 1 byte.

0 Display acknowledged
1 Message not displayed
2 Terminal cannot be used
3~63 Reserved

10.2.80 S10F7 Multi Block Not Allowed (MNN)

Multi-block Not Allowed
S,H E

■Description
Error message from terminal that cannot process
multi block message in S10F5 Terminal Display, Multi
Block(VTN)

■Structure

s10f7
<b TID>

Name Format Description
TID b Terminal Number. 1 byte.

0 Single or main terminal
>0 Added terminal at same

equip.

10.2.81 S14F1 Get Attribute Request (GAR)

GetAttr Request
S,H E, Reply

■Description
This message is used to request a particular
attributes set of one or more objects. This is
composed of the following items: Specifiers for use
by owner of target object (object of interest),
target object type, list of target object
classifiers, filters (restriction-related list, in
other words, limiting to only those objects , among
the target objects of interest, which fulfuill all
restrictions included in the filter) and particular
attributes for which entry of values is necessary.

Object specifiers select the owner of the target
object. They also sequences related to
hierarchically-structured objects. Each element
of the object specifier recognizes the object
instance which is in the highest position of the
object instance next in the sequence. The final
object instance in the sequence is in a hierarchical
structure with the target object. The target object
type indicates the type of the target object. The
object classifier list indicates specific
instances of the object type that is the subject

of interest. In the target type, if the object
classifier does not match that of all the other
object types, and if the classifier list is not
empty, this may be omitted.

The object filter is a nominal list of restrictions
(supplying conditions to apply to object instances
of interest). Each restricted object of interest
is an object which meets all specified restrictions.

Attribute-related quantifiers are logical,
binary-related ATTRRELNi owned by the restriction
value ATTRDATAi specified with respect to the
attributes corresponding to each instance of the
desired object type. Objects restricted by this
filter have attribute values, Vi, for which the
“ATTRDATAi、ATTRRLENi、Vi”statement is True. If
ATTRRLENi is omitted, it will be considered to have
an equivalent relationship.

In the case of a character string attribute value
ATTRDATAi, the question mark “?” and asterisk“*”
symbols are used as wild-card characters for
applying filtering to specific object types. The
“?” symbol can be used to indicate one nominal
character for a nominal attribute value or an
important attribute value in ASCII format. It can
even be used repeatedly. The asterisk symbol“*”
can be used in the same way as the question mark
“?”, to indicate variable-length strings,
including character strings of length 0. String *X”
indicates a variable-length string ending in“X”.
String “X*” indicates a variable-length string
beginning with “X”. String “*” indicates a string
with length other than 0. In text character
comparison, there is no distinction between upper-
and lower-case characters.

No particular extra equipment is necessary in order
to support the wild-card characters or the general
attribute filters.

■Structure

s14f1w
{
 <a OBJSPEC>
 <OBJTYPE>
 {
 <OBJID1>
 .
 .
 <OBJIDi>
 }
 {
 {
 <ATTRID1>
 <ATTRDATA1>
 <u1 ATTRRELN1>
 }
 .
 .
 {
 <ATTRIDq>
 <ATTRDATAq>
 <u1 ATTRRELNq>
 }
 }
 {
 <ATTRID1>
 .
 .
 <ATTRIDa>
 }
}

Name Format Description
OBJSPEC a Text string used to

indicate a specific object
instance having an

Copyright©2004 Jazz Soft, Inc.

 - 95 -

internal format. This
string is composed of a
series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string
format is composed of the
following 4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used
at the end of the
classifier. Object type is
also determined by other
methods so it may be
omitted. The final “>” is
optional.

OBJTYPE a, u* Object group or class
classifier. It must be
possible to use the same
attribute set for all
objects of a single type

OBJID a, u* Classifier for objects
ATTRID a, u* Attribute classifier for

specific types of objects
ATTRDATA l, b,

bool, a,
i*, f*,
u*

Holds specific attribute
value of specific objects.

ATTRRELN u1 Specifies the relationship
between specific
restriction values and
object instance attribute
values (values of
interest)
0 Restriction value is

equivalent to value of
interest

1 Restriction value is
not equivalent to value
of interest

2 Restriction value is
less than value of
interst

3 Restriction value is
less than value of
interest but is
equivalent

4 Restriction value is
more than value of
interest

5 Restriction value is
more than value of
interest but is
equivalent

6 Restriction value
includes value of
interest (part of set)

7 Restriction value does
not include value of
interst (not part of
set).

>7 Reserved
V l, b,

bool, a,
j, i*,
f*, u*

Variable data

■Exceptions
If OBJSPEC is an item of length 0, an object specifier
is not prepared. When i=0, only a filter is added.
When q=0, a filter is not specified. When both i
and q are 0, information on all instances of the
object is requested. When a=0, all attributes are
requested.

10.2.82 S14F2 Get Attribute Data(GAD)

GetAttr Data
M,H E

■Description
This message is used to transmit a requested set of
attributes of a particular object. The order of
attributes is retained from the primary message.

■Structure

s14f2
{
 {
 {
 <OBJID1>
 {
 {
 <ATTRID1>
 <ATTRDATA1>
 }
 .
 .
 {
 <ATTRIDa>
 <ATTRDATAa>
 }
 }
 }
 .
 .
 {
 <OBJIDn>
 {
 {
 <ATTRID1>
 <ATTRDATA1>
 }
 .
 .
 {
 <ATTRIDb>
 <ATTRDATAb>
 }
 }
 }
 }
 {
 <u1 OBJACK>
 {
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
 }
}

Name Format Description
OBJID a, u* Classifier for objects
ATTRID a, u* Attribute classifier for

specific types of objects
ATTRDATA l, b,

bool,
a, i*,
f*, u*

Holds specific attribute
values for specific objects

OBJACK u1 Acknowledgement code
0 Requested data
command executed
1 Error

Copyright©2004 Jazz Soft, Inc.

 - 96 -

>1 Reserved
ERRCODE u* Error classification code

0 No error
1 Unknown object in

object specifier
2 Unknown target

object type
3 Unknown object

instance
4 Unknown attribute

name
5 Read-only attribute.

Access denied.
6 Unknown object type
7 Disabled object val.
8 Syntax error
9 Validation error
10 Verification error
11 Object specifier in

use
12 Parameter specified

incorrectly
13 Not all parameters to

be specified are
specified

14 Requested option not
supported

15 In use
16 Processing

preparation not ready
17 Invalid command in

current status
18 No changed materials
19 Materials partially

processed
20 Materials all

processed
21 Error relating to

recipe specification
22 Failed during process
23 Failed, not during

process。
24 Failed due to

insufficient material
25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report ID
31 Undefined data report
32 Data report unlinked
33 Undefined trace

report
34 Duplicate trace ID
35 Too many data reports
36 Sample period out of

range
37 Group size too large
38 Recovery action

currently invalid
39 Other recovery

preventing requested
recovery currently
underway

40 No active recovery
action

41 Exceptional recovery
failure

42 Exceptional recovery
abort

43 Invalid table element
44 Undefined table

element
45 Previously set item

cannot be deleted
46 Invalid token
47 Invalid parameter
48~63 Reserved

ERRTEXT a Character string showing
ERRCODE. Max 80 characters

■Exceptions
If OBJSPEC is an object of length 0, an object
specifier is not prepared. When n=o, there is no
object compliant with a particular filter. When p=0,
no error was detected.
Name Format Description
OBJSPEC a Text string used to indicate a

specific object instance
having an internal format.
This string is composed of a
series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string format
is composed of the following
4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used at
the end of the classifier.
Object type is also determined
by other methods so it may be
omitted. The final “ >” is
optional.

10.2.83 S15F1 Recipe Management Multi Block Inquire

Recipe Management Multi-block Inquire
S,H E, Reply

■Description
This message requests authorization to send a multi
block message, based on the maximum message length
for the full multi block message.

■Structure

s15f1w
{
 <u4 DATAID>
 <a RCPSPEC>
 <RMDATASIZE>
}

Name Format Description
DATAID u4 Data ID
RCPSPEC a Recipe specifier. Recipe

object specifier.
RMDATASIZE u* Indicates maximum length

for multi block message in
number of bytes; used to
cause the receiver
determine whether an
expected message exceeds
receiver capacity

■Exceptions
If RCPSPEC is a character string of length 0, no multi
block message subject to send authorization is
included in the recipe.

10.2.84 S15F2 Recipe Management Multi Block Grant

Recipe Management Multi-block Grant
S,H E

■Description

Copyright©2004 Jazz Soft, Inc.

 - 97 -

This message grants or denies multi block message
sending.

■Structure

s15f2
<b RMGRNT>

Name Format Description
RMGRNT b Grant code. Used to grant or

denya request. 1 byte.
0 Granted
1 Cannot currently grant.

Retry
2 No space
3 Request on standby
4~64 Reserved

10.2.85 S15F21 Recipe Action Request

Recipe Action Request
M,H E, Reply

■Description
This message is used to verify a specific action
request to be executed in one or more recipes in
the name space.

■Structure

s15f21w
{
 <u4 DATAID>
 <u1 RCPCMD>
 <a RMNSSPEC>
 <u* OPID>
 <a AGENT>
 {
 <a RCPID1>
 .
 .
 <a RCPIDn>
 }
}

Name Format Description
DATAID u4 Data ID
RCPCMD u1 Indicates action to be

executed in the recipe
0~4 Reserved
5 Delete
6~7 Reserved
8 No save
9 Save
10 Validate
11 Link
12 Clear link
13 Authenticate
14 Cancel verification
15 Download
16 Upload
17~63 Reserved

RMNSSPEC a Recipe name space object
specifier

OPID u* Operation ID. Unique integer
created by operation
requestor; used when
multiple completion
verifications occur.

AGENT a
RCPID a Recipe classifier. Formatted

text is in accordance with
requirements of OBJSPEC.

OBJSPEC a Text string used to indicate
a specific object instance
having an internal format.
This string is composed of a

series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string
format is composed of the
following 4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used at
the end of the classifier.
Object type is also determined
by other methods so it may be
omitted. The final “>” is
optional.

■Exceptions
Except for verification, cancel verification,
download and upload requests, AGENT will be a
character string of length 0.

10.2.86 S15F22 Recipe Action Acknowledge

Recipe Action Acknowledge
M,H E

■Description
This message is used to verify a request to create
a new recipe.

■Structure

s15f22
{
 <a AGENT>
 <u4 LINKID>
 <u1 RCPCMD>
 {
 <u1 RMACK>
 {
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
 }
}

Name Format Description
AGENT a
LINKID u4 Used to link operation

execution requests and
completion messages. LINKID is
set to the MOPID value included
in the initial request.In
exceptional cases, this is a
completion message to be sent
at the end, and in such cases
it is set to 0.

RCPCMD u1 Shows action to be executed in
recipe.

0~4 Reserved
5 Delete
6~7 Reserved
8 No save
9 Save

Copyright©2004 Jazz Soft, Inc.

 - 98 -

10 Validate
11 Link
12 Clear link
13 Authenticate
14 Cancel verification
15 Download
16 Upload
17~63 Reserved

RMACK u1 Communicates whether
requested action was
successfully completed, was
denied, terminated due to
error, or completed with
notification to the requestor.
0 Completed successfully
1 Cannot execute

corresponding action
2 Terminated due to error
3 Corresponding action will

be completed and
notification send

4 Corresponding action does
not require existence

ERRCODE u* Error classification code
0 No error
1 Unkown object in

object specifier
2 Unknown target object

type
3 Unknown object instance
4 Unknown attribute name
5 Read-only attribute.

Access denied.
6 Unknown object type
7 Invalid attribute val.
8 Syntax error
9 Validation error
10 Verification error
11 Object specifier in use
12 Parameter not

correctly specified
13 Not all parameters to

be specified are
specified.

14 Requested option not
supported

15 In use
16 Processing

preparation not ready
17 Invalid command in

current status
18 No changed material
19 Material partially

processed
20 Material all processed
21 Error relating to

recipe specification
22 Failed during process
23 Failed, not during

process。
24 Failed due to

insufficient material
25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report ID
31 Undefined data report
32 Data report unlinked
33 Undefined trace report
34 Duplicate trace ID
35 Too many data reports
36 Sample period out of

range
37 Group size too large
38 Recovery action

currently invalid
39 Other recovery

preventing requested
recovery currently

underway
40 No active recovery

action
41 Exceptional recovery

failure
42 Exceptional recovery

abort
43 Invalid table element
44 Undefined table element
45 Previously set item

cannot be deleted
46 Invalid token
47 Invalid parameter
48~63 Reserved

ERRTEXT a Character string showing error
indicated in ERRCODE. Max 80
characters

■Exceptions
Only when all requested actions are comleted is
LINKID 0. Only when RMACK indicates no errors is p=0.

10.2.87 S15F27 Recipe Download Request

Recipe Download Request
M,H E, Reply

■Description
This message is used to send recipes to a recipe
executor. In this case, the following transactions
precede: S15F1 Recipe Management Multi Block
Inquire、S15F2 Recipe Management Multi Block Grant

■Structure

s15f27w
{
 <u4 DATAID>
 <bool RCPOWCODE>
 <a RCPSPEC>
 {
 {
 <a RCPATTRID1>
 <RCPATTRDATA1>
 }
 .
 .
 {
 <a RCPATTRIDm>
 <RCPATTRDATAm>
 }
 }
 <RCBODY>
}

Name Format Description
DATAID u4 Data ID
RCPOWCODE bool Indicates whether

previously existing
recipes will be
over-written (=TRUE) or
not (=FALSE) when
downloading occurs.

RCPSPEC a Recipe specifier. Recipe
object specifier

RCPATTRID a Non-classifier
attribute name
(classifier)

RCPATTRDATA l, b,
bool,
a, i*,
f*, u*

Recipe attribute
contents (value)

RCBODY b, a,
i*, u*

Recipe main body

10.2.88 S15F28 Recipe Download Acknowledge

Copyright©2004 Jazz Soft, Inc.

 - 99 -

Recipe Download Acknowledge
M,H E

■Description
This message is used to verify that the recipe
executor sent a recipe. If recipe validation is
successful, the results are returned to the center.
If an object-format derivative recope is created
during validation, RCPID will include a classifier
for this derivative recipe.

■Structure

s15f28
{
 <a RCPID>
 {
 {
 <a RCPATTRID1>
 <RCPATTRDATA1>
 }
 .
 .
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
}

Name Form-

at
Description

RCPID a Recipe classifier.
Formatted text is in
accordance with
requirements of OBJSPEC.

OBJSPEC a Text string used to
indicate a specific
object instance having an
internal format. This
string is composed of a
series of formatted
sub-strings, each of
which identifies object
type and classifier.
Sub-string format is
composed of the following
4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at
the end of the object type.
The inequality sign“>” is
used at the end of the
classifier. Object type
is also determined by
other methods so it may
be omitted. The final “>”
is optional.

RCPATTRID a Non-classifier attribute
name (classifier)

RCPATTRDATA l, b,
bool,
a, i*,
f*, u*

Recipe attribute contents
(value)

RMACK u1 Communicates whether
requested action was
successfully completed,

was denied, terminated
due to error, or completed
with notification to the
requestor.
0 Completed

successfully
1 Cannot execute

corresponding action
2 Terminated due to

error
3 Corresponding action

will be completed and
notification send

4 Corresponding action
does not require
existence

ERRCODE u* Error classification code

0 No error
1 Unkown object in

object specifier
2 Unknown target

object type
3 Unknown object

instance
4 Unknown attribute

name
5 Read-only

attribute. Access
denied.

6 Unknown object
type

7 Invalid attribute
val.

8 Syntax error
9 Validation error
10 Verification

error
11 Object specifier

in use
12 Parameter not

correctly
specified

13 Not all
parameters to be
specified are
specified.

14 Requested option
not supported

15 In use
16 Processing

preparation not
ready

17 Invalid command in
current status

18 No changed
material

19 Material
partially
processed

20 Material all
processed

21 Error relating to
recipe
specification

22 Failed during
process

23 Failed, not during
process。

24 Failed due to
insufficient
material

25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report

ID
31 Undefined data

report
32 Data report

Copyright©2004 Jazz Soft, Inc.

 - 100 -

unlinked
33 Undefined trace

report
34 Duplicate trace ID
35 Too many data

reports
36 Sample period out

of range
37 Group size too

large
38 Recovery action

currently invalid
39 Other recovery

preventing
requested
recovery
currently
underway

40 No active recovery
action

41 Exceptional
recovery failure

42 Exceptional
recovery abort

43 Invalid table
element

44 Undefined table
element

45 Previously set
item cannot be
deleted

46 Invalid token
47 Invalid parameter
48~63 Reserved

ERRTEXT a Character string stating
error shown in ERRCODE.
Max 80 characters

■Exceptions
In the case of items of length 0, object-format
derivative recipes cannot be created. Only if the
recipe was not verified or failed verification will
n=0. Only when RMACK indicates no errors will P=0.

10.2.89 S15F29 Recipe Verify Request

Recipe Verify Request
M,H E, Reply

■Description
This message is used for the recipe executor to
request recipe verification of a single or multiple
recipes. In the case of multi block, the S15F1 Recipe
Management Multi Block Inquire and S15F2 Recipe
Managemenet Multi Block Grant transactions precede
this. The operation classifier OPID is used when
multiple verification requests are not yet
processed, and if no further verifications are
requested until all verification requests received
by that time by the recipe executor are completed,
it will be 0. In any other case, OPID will be unique
for each requestor. RESPEC is a recipe executor
object specifier.

■Structure

s15f29w
{
 <u4 DATAID>
 <OPID>
 <a RESPEC>
 {
 <a RCPID1>
 .
 .
 <a RCPIDm>
 }
}

Name Format Description
DATAID u4 Data ID
OPID u* Operation ID. Unique integer

created by operation
requestor; used when multiple
completion verifications
occur.

RESPEC a Recipe executor object
specifier

RCPID a Recipe classifier. Formatted
text is in accordance with
requirements of OBJSPEC.

OBJSPEC a Text string used to indicate a
specific object instance
having an internal format.
This string is composed of a
series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string
format is composed of the
following 4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used at
the end of the classifier.
Object type is also determined
by other methods so it may be
omitted. The final “ >” is
optional.

■Exceptions
If RESPEC is an item of length 0, the target is the
receiver of the message.

10.2.90 S15F30 Recipe Verify Acknowledge

Recipe Verify Acknowledge
M,H E

■Description
This message is used to verify single or multiple
recipe verification requests. If one recipe
verification was requested and that verification
was successful, the result will be sent to the
senter using this message. If an object-format
derivative recipe was created during verification,
the classifier of that derivative recipe will be
included in RCPID. If the verification of multiple
recipes was requested, LINKID will be other than
0.

■Structure

s15f30
{
 <OPID>
 <u4 LINKID>
 <A RCPID>
 {
 {
 <a RCPATTRID1>
 <RCPATTRDATA1>
 }
 .
 .
 {
 <a RCPATTRIDn>
 <RCPATTRDATAn>
 }
 }

Copyright©2004 Jazz Soft, Inc.

 - 101 -

 {
 <u1 RMACK>
 {
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
 }
}

Name Form-

at
Description

OPID u* Operation ID. Unique
integer created by
operation requestor; used
when multiple completion
verifications occur.

LINKID u4 Used to link operation
execution requests and
completion messages.
LINKID is set to the MOPID
value included in the
initial request.In
exceptional cases, this
is a completion message to
be sent at the end, and in
such cases it is set to 0.

RCPID a Recipe classifier.
Formatted text is in
accordance with
requirements of OBJSPEC.

RCPATTRID a Non-classifier attribute
name (classifier)

RCPATTRDATA l, b,
bool,
a,
i*,
f*,
u*

Recipe attribute contents
(value)

RMACK u1 Communicates whether
requested action was
successfully completed,
was denied, terminated
due to error, or completed
with notification to the
requestor.
0 Completed

successfully
1 Cannot execute

corresponding action
2 Terminated due to

error
3 Corresponding action

will be completed and
notification sent

4 Corresponding action
does not require
existence

ERRCODE u* Error classification code
0 No error
1 Unkown object in

object specifier
2 Unknown target

object type
3 Unknown object

instance
4 Unknown attribute

name
5 Read-only

attribute. Access
denied.

6 Unknown object
type

7 Invalid attribute

val.
8 Syntax error
9 Validation error
10 Verification

error
11 Object specifier

in use
12 Parameter not

correctly
specified

13 Not all
parameters to be
specified are
specified.

14 Requested option
not supported

15 In use
16 Processing

preparation not
ready

17 Invalid command in
current status

18 No changed
material

19 Material
partially
processed

20 Material all
processed

21 Error relating to
recipe
specification

22 Failed during
process

23 Failed, not during
process。

24 Failed due to
insufficient
material

25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report

ID
31 Undefined data

report
32 Data report

unlinked
33 Undefined trace

report
34 Duplicate trace ID
35 Too many data

reports
36 Sample period out

of range
37 Group size too

large
38 Recovery action

currently invalid
39 Other recovery

preventing
requested
recovery
currently
underway

40 No active recovery
action

41 Exceptional
recovery failure

42 Exceptional
recovery abort

43 Invalid table
element

44 Undefined table
element

45 Previously set
item cannot be
deleted

46 Invalid token
47 Invalid parameter

Copyright©2004 Jazz Soft, Inc.

 - 102 -

48~63 Reserved
ERRTEXT a Character string stating

error shown in ERRCODE.
Max 80 characters

OBJSPEC a Text string used to
indicate a specific
object instance having an
internal format. This
string is composed of a
series of formatted
sub-strings, each of
which identifies object
type and classifier.
Sub-string format is
composed of the following
4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at
the end of the object type.
The inequality sign“>” is
used at the end of the
classifier. Object type
is also determined by
other methods so it may
be omitted. The final “>”
is optional.

■Exceptions
Only if verification of just one recipe was requested
and it was completed, will LINKID be 0. if Item
3 is an item of length 0, no object-format
derivative recipe has been created. Only if a
recipe was not verified, or if verification failed,
will n=0. Only if RMACK indicates no error will
p=0.

10.2.91 S15F31 Recipe Unload Request

Recipe Unload Request
S,H E, Reply

■Description
This message is used to request recipes to be
executed from the recipe executor.

■Structure

s15f31
<a RCSPEC>

Name Format Description
RCPSPEC a Recipe specifier. Recipe

object specifier.

10.2.92 S15F32 Recipe Unload Data

Recipe Unload Data
M,H E

■Description
This message is used to send recipes to be executed
from the recipe executor.

■Structure

s15f32
{
 <a RCPSPEC>
 {

 {
 <a RCPATTRID1>
 <RCPATTRDATA1>
 }
 .
 .
 {
 <a RCPATTRIDm>
 <RCPATTRDATAm>
 }
 }
 <RCPBODY>
 {
 <u1 RMACK>
 {
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
 }
}

Name Form-

at
Description

RCPSPEC a Recipe specifier. Recipe
object specifier.

RCPATTRID a Non-classifier attribute
name (classifier)

RCPATTRDATA l, b,
bool,
a,
i*,
f*,
u*

Recipe attribute contents
(value)

RCPBODY b, a,
i*,
u*

Recipe main body

RMACK u1 Communicates whether
requested action was
successfully completed,
was denied, terminated
due to error, or completed
with notification to the
requestor.
0 Completed

successfully
1 Cannot execute

corresponding action
2 Terminated due to

error
3 Corresponding action

will be completed and
notification sent

4 Corresponding action
does not require
existence

ERRCODE u* Error classification code
0 No error
1 Unkown object in

object specifier
2 Unknown target

object type
3 Unknown object

instance
4 Unknown attribute

name
5 Read-only

attribute. Access
denied.

6 Unknown object
type

7 Invalid attribute
val.

8 Syntax error

Copyright©2004 Jazz Soft, Inc.

 - 103 -

9 Validation error
10 Verification

error
11 Object specifier

in use
12 Parameter not

correctly
specified

13 Not all
parameters to be
specified are
specified.

14 Requested option
not supported

15 In use
16 Processing

preparation not
ready

17 Invalid command in
current status

18 No changed
material

19 Material
partially
processed

20 Material all
processed

21 Error relating to
recipe
specification

22 Failed during
process

23 Failed, not during
process。

24 Failed due to
insufficient
material

25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report

ID
31 Undefined data

report
32 Data report

unlinked
33 Undefined trace

report
34 Duplicate trace ID
35 Too many data

reports
36 Sample period out

of range
37 Group size too

large
38 Recovery action

currently invalid
39 Other recovery

preventing
requested
recovery
currently
underway

40 No active recovery
action

41 Exceptional
recovery failure

42 Exceptional
recovery abort

43 Invalid table
element

44 Undefined table
element

45 Previously set
item cannot be
deleted

46 Invalid token
47 Invalid parameter
48~63 Reserved

ERRTEXT a Character string stating

error shown in ERRCODE.
Max 80 characters

■Exceptions
Only when RMACK shows no errors will P=0.

10.2.93 S15F35 Recipe Delete Request

Recipe Delete Request
M,H E, Reply

■Description
This message is used to request deletion or
deselection of a single or multiple recipes. In the
case of multi block, the S15F1 Recipe Management
Multi Block Inquire、S15F2 Recipe Management Multi
Block Grant transactions precede this.

■Structure

s15f35w
{
 <u4 DATAID>
 <a RESPEC>
 <u1 RCPDEL>
 {
 <a RCPID1>
 .
 .
 <a RCPIDn>
 }
}

Name Format Description
DATAID u4 Data ID
RESPEC a Recipe executor object

specifier
RCPDEL u1 0 Delete

1 Deselect
>1 Reserved

RCPID a Recipe classifier. Formatted
text is in accordance with
requirements of OBJSPEC.

OBJSPEC a Text string used to indicate a
specific object instance
having an internal format.
This string is composed of a
series of formatted
sub-strings, each of which
identifies object type and
classifier. Sub-string format
is composed of the following
4 fields.

Object type
Colon“:”
Object classifier
Inequality sign“>”

The colon “:” is used at the
end of the object type. The
inequality sign“>” is used at
the end of the classifier.
Object type is also determined
by other methods so it may be
omitted. The final “ >” is
optional.

■Exceptions
Lists with n=0 in cases of deselecting a recipe
（RCPDEL=1）indicate that all currently selected
recipes will be displayed.

10.2.94 S15F36 Recipe Delete Acknowledge

Copyright©2004 Jazz Soft, Inc.

 - 104 -

Recipe Delete Acknowledge
M,H E

■Description
This message is used to acknowledge requests to
delete or deselect recipes.

■Structure

s15f36
{
 <u1 RMACK>
 {
 {
 <ERRCODE1>
 <a ERRTEXT1>
 }
 .
 .
 {
 <ERRCODEp>
 <a ERRTEXTp>
 }
 }
}

Name Format Description
RMACK u1 Communicates whether

requested action was
successfully completed, was
denied, terminated due to
error, or completed with
notification to the requestor.
0 Completed successfully
1 Cannot execute

corresponding action
2 Terminated due to error
3 Corresponding action will

be completed and
notification sent

4 Corresponding action does not
require existence

ERRCODE u* Error classification code
0 No error
1 Unkown object in

object specifier
2 Unknown target object

type
3 Unknown object instance
4 Unknown attribute name
5 Read-only attribute.

Access denied.
6 Unknown object type
7 Invalid attribute val.
8 Syntax error
9 Validation error
10 Verification error
11 Object specifier in use
12 Parameter not

correctly specified
13 Not all parameters to

be specified are
specified.

14 Requested option not
supported

15 In use
16 Processing

preparation not ready
17 Invalid command in

current status
18 No changed material
19 Material partially

processed
20 Material all processed
21 Error relating to

recipe specification
22 Failed during process
23 Failed, not during

process
24 Failed due to

insufficient material
25 Job abort
26 Job stop
27 Job clear
28 Recipe selected

cannot be changed
29 Undefined event
30 Duplicate report ID
31 Undefined data report
32 Data report unlinked
33 Undefined trace report
34 Duplicate trace ID
35 Too many data reports
36 Sample period out of

range
37 Group size too large
38 Recovery action

currently invalid
39 Other recovery

preventing requested
recovery currently
underway

40 No active recovery
action

41 Exceptional recovery
failure

42 Exceptional recovery
abort

43 Invalid table element
44 Undefined table element
45 Previously set item

cannot be deleted
46 Invalid token
47 Invalid parameter
48~63 Reserved

ERRTEXT a Character string stating error
shown in ERRCODE. Max 80
characters

■Exceptions
Only if RMACK shows no errors will p=0.

